ﻻ يوجد ملخص باللغة العربية
This paper addresses the standard generalized likelihood ratio test (GLRT) detection problem of weak signals in background noise. In so doing, we consider a nonfluctuating target embedded in complex white Gaussian noise (CWGN), in which the amplitude of the target echo and the noise power are assumed to be unknown. Important works have analyzed the performance for the referred scenario and proposed GLRT-based detectors. Such detectors are projected at an early stage (i.e., prior to the formation of a post-beamforming scalar waveform), thereby imposing high demands on hardware, processing, and data storage. From a hardware perspective, most radar systems fail to meet these strong requirements. In fact, due to hardware and computational constraints, most radars use a combination of analog and digital beamformers (sums) before any estimation or further pre-processing. The rationale behind this study is to derive a GLRT detector that meets the hardware and system requirements. In this work, we design and analyze a more practical and easy-to-implement GLRT detector, which is projected after the analog beamforming. The performance of the proposed detector is analyzed and the probabilities of detection (PD) and false alarm (PFA) are derived in closed form. Moreover, we show that in the low signal-to-noise ratio (SNR) regime, the post-beamforming GLRT detector performs better than both the classic pre-beamforming GLRT detector and the square-law detector. This finding suggests that if the signals are weak, instead of processing the signals separately, we first must to reinforce the overall signal and then assembling the systems detection statistic. At last, the SNR losses are quantified, in which the superiority of the post-beamforming GLRT detector was evidenced as the number of antennas and samples increase.
The design of a conical phased array antenna for air traffic control (ATC) radar systems is addressed in this work. The array, characterized by a fully digital beam-forming (DBF) architecture, is composed of equal vertical modules consisting of linea
Based on the technique of generalized likelihood ratio test, we address detection schemes for Doppler-shifted range-spread targets in Gaussian noise. First, a detection scheme is derived by solving the maximization associated with the estimation of u
Millimeter wave (mmWave) technology can achieve high-speed communication due to the large available spectrum. Furthermore, the use of directional beams in mmWave system provides a natural defense against physical layer security attacks. In practice,
The design of isophoric phased arrays composed of two-sized square-shaped tiles that fully cover rectangular apertures is dealt with. The number and the positions of the tiles within the array aperture are optimized to fit desired specifications on t
In this paper, four adaptive radar architectures for target detection in heterogeneous Gaussian environments are devised. The first architecture relies on a cyclic optimization exploiting the Maximum Likelihood Approach in the original data domain, w