ترغب بنشر مسار تعليمي؟ اضغط هنا

Radar Adaptive Detection Architectures for Heterogeneous Environments

76   0   0.0 ( 0 )
 نشر من قبل Danilo Orlando
 تاريخ النشر 2020
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, four adaptive radar architectures for target detection in heterogeneous Gaussian environments are devised. The first architecture relies on a cyclic optimization exploiting the Maximum Likelihood Approach in the original data domain, whereas the second detector is a function of transformed data which are normalized with respect to their energy and with the unknown parameters estimated through an Expectation-Maximization-based alternate procedure. The remaining two architectures are obtained by suitably combining the estimation procedures and the detector structures previously devised. Performance analysis, conducted on both simulated and measured data, highlights that the architecture working in the transformed domain guarantees the constant false alarm rate property with respect to the interference power variations and a limited detection loss with respect to the other detectors, whose detection thresholds nevertheless are very sensitive to the interference power.



قيم البحث

اقرأ أيضاً

In this paper, we propose a new solution for the detection problem of a coherent target in heterogeneous environments. Specifically, we first assume that clutter returns from different range bins share the same covariance structure but different powe r levels. This model meets the experimental evidence related to non-Gaussian and non-homogeneous scenarios. Then, unlike existing solutions that are based upon estimate and plug methods, we propose an approximation of the generalized likelihood ratio test where the maximizers of the likelihoods are obtained through an alternating estimation procedure. Remarkably, we also prove that such estimation procedure leads to an architecture possessing the constant false alarm rate (CFAR) when a specific initialization is used. The performance analysis, carried out on simulated as well as measured data and in comparison with suitable well-known competitors, highlights that the proposed architecture can overcome the CFAR competitors and exhibits a limited loss with respect to the other non-CFAR detectors.
In this paper, we address the problem of target detection in the presence of coherent (or fully correlated) signals, which can be due to multipath propagation effects or electronic attacks by smart jammers. To this end, we formulate the problem at ha nd as a multiple-hypothesis test that, besides the conventional radar alternative hypothesis, contains additional hypotheses accounting for the presence of an unknown number of interfering signals. In this context and leveraging the classification capabilities of the Model Order Selection rules, we devise penalized likelihood-ratio-based detection architectures that can establish, as a byproduct, which hypothesis is in force. Moreover, we propose a suboptimum procedure to estimate the angles of arrival of multiple coherent signals ensuring (at least for the considered parameters) almost the same performance as the exhaustive search. Finally, the performance assessment, conducted over simulated data and in comparison with conventional radar detectors, highlights that the proposed architectures can provide satisfactory performance in terms of probability of detection and correct classification.
In this paper, we develop a new elegant framework relying on the Kullback-Leibler Information Criterion to address the design of one-stage adaptive detection architectures for multiple hypothesis testing problems. Specifically, at the design stage, w e assume that several alternative hypotheses may be in force and that only one null hypothesis exists. Then, starting from the case where all the parameters are known and proceeding until the case where the adaptivity with respect to the entire parameter set is required, we come up with decision schemes for multiple alternative hypotheses consisting of the sum between the compressed log-likelihood ratio based upon the available data and a penalty term accounting for the number of unknown parameters. The latter rises from suitable approximations of the Kullback-Leibler Divergence between the true and a candidate probability density function. Interestingly, under specific constraints, the proposed decision schemes can share the constant false alarm rate property by virtue of the Invariance Principle. Finally, we show the effectiveness of the proposed framework through the application to examples of practical value in the context of radar detection also in comparison with two-stage competitors. This analysis highlights that the architectures devised within the proposed framework represent an effective means to deal with detection problems where the uncertainty on some parameters leads to multiple alternative hypotheses.
In this paper, power allocation is examined for the coexistence of a radar and a communication system that employ multicarrier waveforms. We propose two designs for the considered spectrum sharing problem by maximizing the output signal-to-interferen ce-plus-noise ratio (SINR) at the radar receiver while maintaining certain communication throughput and power constraints. The first is a joint design where the subchannel powers of both the radar and communication systems are jointly optimized. Since the resulting problem is highly nonconvex, we introduce a reformulation by combining the power variables of both systems into a single stacked variable, which allows us to bypass a conventional computationally intensive alternating optimization procedure. The resulting problem is then solved via a quadratic transform method along with a sequential convex programming (SCP) technique. The second is a unilateral design which optimizes the radar transmission power with fixed communication power. The unilateral design is suitable for cases where the communication system pre-exists while the radar occasionally joins the channel as a secondary user. The problem is solved by a Taylor expansion based iterative SCP procedure. Numerical results are presented to demonstrate the effectiveness of the proposed joint and unilateral designs in comparison with a subcarrier allocation based method.
Sparse array design aided by emerging fast sensor switching technologies can lower the overall system overhead by reducing the number of expensive transceiver chains. In this paper, we examine the active sparse array design enabling the maximum signa l to interference plus noise ratio (MaxSINR) beamforming at the MIMO radar receiver. The proposed approach entails an entwined design, i.e., jointly selecting the optimum transmit and receive sensor locations for accomplishing MaxSINR receive beamforming. Specifically, we consider a co-located multiple-input multiple-output (MIMO) radar platform with orthogonal transmitted waveforms, and examine antenna selections at the transmit and receive arrays. The optimum active sparse array transceiver design problem is formulated as successive convex approximation (SCA) alongside the two-dimensional group sparsity promoting regularization. Several examples are provided to demonstrate the effectiveness of the proposed approach in utilizing the given transmit/receive array aperture and degrees of freedom for achieving MaxSINR beamforming.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا