ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysing the radio flux density profile of the M31 galaxy: a possible dark matter interpretation

92   0   0.0 ( 0 )
 نشر من قبل Man Ho Chan
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Some recent studies have examined the gamma-ray flux profile of our Galaxy to determine the signal of dark matter annihilation. However, the results are controversial and no confirmation is obtained. In this article, we study the radio flux density profile of the M31 galaxy and show that it could manifest a possible signal of dark matter annihilation. By comparing the likelihoods between the archival observed radio flux density profile data and the predicted radio flux density profile contributed by dark matter and stellar emission, we can constrain the relevant dark matter parameters. Specifically, for the thermal annihilation cross section via the $bbar{b}$ channel, the best-fit value of dark matter mass is $sim 30$ GeV, which is consistent with the results of many recent studies. We expect that this method would become another useful way to constrain dark matter, which is complementary to the traditional radio analyses and the other indirect detections.



قيم البحث

اقرأ أيضاً

Large-scale faint structure detected by the recent observations in the halo of the Andromeda galaxy (M31) provides an attractive window to explore the structure of outer cold dark matter (CDM) halo in M31. Using an N-body simulation of the interactio n between an accreting satellite galaxy and M31, we investigate the mass density profile of the CDM halo. We find the sufficient condition of the outer density profile of CDM halo in M31 to reproduce the Andromeda giant stream and the shells at the east and west sides of M31. The result indicates that the density profile of the outer dark matter halo of M31 is a steeper than the prediction of the theory of the structure formation based on the CDM model.
244 - Simona Vegetti 2014
We consider three extensions of the Navarro, Frenk and White (NFW) profile and investigate the intrinsic degeneracies among the density profile parameters on the gravitational lensing effect of satellite galaxies on highly magnified Einstein rings. I n particular, we find that the gravitational imaging technique can be used to exclude specific regions of the considered parameter space, and therefore, models that predict a large number of satellites in those regions. By comparing the lensing degeneracy with the intrinsic density profile degeneracies, we show that theoretical predictions based on fits that are dominated by the density profile at larger radii may significantly over- or underestimate the number of satellites that are detectable with gravitational lensing. Finally, using the previously reported detection of a satellite in the gravitational lens system JVAS B1938+666 as an example, we derive for this detected satellite values of r_max and v_max that are, for each considered profile, consistent within 1sigma with the parameters found for the luminous dwarf satellites of the Milky Way and with a mass density slope gamma < 1.6. We also find that the mass of the satellite within the Einstein radius as measured using gravitational lensing is stable against assumptions on the substructure profile. In the future thanks to the increased angular resolution of very long baseline interferometry at radio wavelengths and of the E-ELT in the optical we will be able to set tighter constraints on the number of allowed substructure profiles.
117 - Man Ho Chan , Chak Man Lee 2020
Recent gamma-ray and radio observations provide stringent constraints for annihilating dark matter. The current $2sigma$ lower limits of dark matter mass can be constrained to $sim 100$ GeV for thermal relic annihilation cross section. In this articl e, we use the radio continuum spectral data of a nearby galaxy NGC4214 and differentiate the thermal contribution, dark matter annihilation contribution and cosmic-ray contribution. We can get more stringent constraints of dark matter mass and annihilation cross sections. The $5sigma$ lower limits of thermal relic annihilating dark matter mass obtained are 300 GeV, 220 GeV, 220 GeV, 500 GeV and 600 GeV for $e^+e^-$, $mu^+mu^-$, $tau^+tau^-$, $W^+W^-$ and $bbar{b}$ channels respectively. These limits challenge the dark matter interpretation of the gamma-ray, positron and antiproton excess in our Milky Way.
The cold dark matter (CDM) cosmology, which is the standard theory of the structure formation in the universe, predicts that the outer density profile of dark matter halos decreases with the cube of distance from the center. However, so far not much effort has examined this hypothesis. In the halo of the Andromeda galaxy (M31), large-scale stellar structures detected by the recent observations provide a potentially suitable window to investigate the mass--density distribution of the dark matter halo. We explore the density structure of the dark matter halo in M31 using an N-body simulation of the interaction between an accreting satellite galaxy and M31. To reproduce the Andromeda Giant Southern Stream and the stellar shells at the east and west sides of M31, we find the sufficient condition for the power-law index $alpha$ of the outer density distribution of the dark matter halo. The best-fit parameter is $alpha=-3.7$, which is steeper than the CDM prediction.
We present a deep radio search in the Reticulum II dwarf spheroidal (dSph) galaxy performed with the Australia Telescope Compact Array. Observations were conducted at 16 cm wavelength, with an rms sensitivity of 0.01 mJy/beam, and with the goal of se arching for synchrotron emission induced by annihilation or decay of weakly interacting massive particles (WIMPs). Data were complemented with observations on large angular scales taken with the KAT-7 telescope. We find no evidence for a diffuse emission from the dSph and we derive competitive bounds on the WIMP properties. In addition, we detect more than 200 new background radio sources. Among them, we show there are two compelling candidates for being the radio counterpart of the possible gamma-ray emission reported by other groups using Fermi-LAT data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا