ﻻ يوجد ملخص باللغة العربية
Recent gamma-ray and radio observations provide stringent constraints for annihilating dark matter. The current $2sigma$ lower limits of dark matter mass can be constrained to $sim 100$ GeV for thermal relic annihilation cross section. In this article, we use the radio continuum spectral data of a nearby galaxy NGC4214 and differentiate the thermal contribution, dark matter annihilation contribution and cosmic-ray contribution. We can get more stringent constraints of dark matter mass and annihilation cross sections. The $5sigma$ lower limits of thermal relic annihilating dark matter mass obtained are 300 GeV, 220 GeV, 220 GeV, 500 GeV and 600 GeV for $e^+e^-$, $mu^+mu^-$, $tau^+tau^-$, $W^+W^-$ and $bbar{b}$ channels respectively. These limits challenge the dark matter interpretation of the gamma-ray, positron and antiproton excess in our Milky Way.
In their recent paper, Chan and Lee discuss an interesting possibility: radio continuum emission from a dwarf irregular galaxy may be used to constrain upper limits on the cross section of annihilating dark matter. They claim that the contributions f
In the past decade, the properties of annihilating dark matter models were examined by various kinds of data, including the data of gamma rays, radio waves, X-ray, positrons, electrons, antiprotons and neutrinos. In particular, most of the studies fo
We compute the sensitivity to dark matter annihilations for the forthcoming large Cherenkov Telescope Array (CTA) in several primary channels and over a range of dark matter masses from 30 GeV up to 80 TeV. For all channels, we include inverse Compto
In the past few years, some studies claimed that annihilating dark matter with mass $sim 10-100$ GeV can explain the GeV gamma-ray excess in our Galaxy. However, recent analyses of the Fermi-LAT and radio observational data rule out the possibility o
Dark matter (DM) is the most abundant material in the Universe, but has so far been detected only via its gravitational effects. Several theories suggest that pairs of DM particles can annihilate into a flash of light at gamma-ray wavelengths. While