ﻻ يوجد ملخص باللغة العربية
The symmetric difference of the $q$-binomial coefficients $F_{n,k}(q)={n+kbrack k}-q^{n}{n+k-2brack k-2}$ was introduced by Reiner and Stanton. They proved that $F_{n,k}(q)$ is symmetric and unimodal for $k geq 2$ and $n$ even by using the representation theory for Lie algebras. Based on Sylvesters proof of the unimodality of the Gaussian coefficients, as conjectured by Cayley, we find an interpretation of the unimodality of $F_{n,k}(q)$ in terms of semi-invariants. In the spirit of the strict unimodality of the Gaussian coefficients due to Pak and Panova, we prove the strict unimodality of the symmetric difference $G_{n,k,r}(q)={n+kbrack k}-q^{nr/2}{n+k-rbrack k-r}$, except for the two terms at both ends, where $n,rgeq8$, $kgeq r$ and at least one of $n$ and $r$ is even.
We obtain a combinatorial formula related to the shear transformation for semi-invariants of binary forms, which implies the classical characterization of semi-invariants in terms of a differential operator. Then, we present a combinatorial proof of
The symmetric group acts on polynomial differential forms on $mathbb{R}^{n}$ through its action by permuting the coordinates. In this paper the $S_{n}% $-invariants are shown to be freely generated by the elementary symmetric polynomials and their ex
This work lies across three areas (in the title) of investigation that are by themselves of independent interest. A problem that arose in quantum computing led us to a link that tied these areas together. This link consists of a single formal power s
Let alpha = (a,b,...) be a composition. Consider the associated poset F(alpha), called a fence, whose covering relations are x_1 < x_2 < ... < x_{a+1} > x_{a+2} > ... > x_{a+b+1} < x_{a+b+2} < ... . We study the associated distributive lattice L(alph
A polynomial $A(q)=sum_{i=0}^n a_iq^i$ is said to be unimodal if $a_0le a_1le cdots le a_kge a_{k+1} ge cdots ge a_n$. We investigate the unimodality of rational $q$-Catalan polynomials, which is defined to be $C_{m,n}(q)= frac{1}{[n+m]} left[ m+n at