ﻻ يوجد ملخص باللغة العربية
A polynomial $A(q)=sum_{i=0}^n a_iq^i$ is said to be unimodal if $a_0le a_1le cdots le a_kge a_{k+1} ge cdots ge a_n$. We investigate the unimodality of rational $q$-Catalan polynomials, which is defined to be $C_{m,n}(q)= frac{1}{[n+m]} left[ m+n atop nright]$ for a coprime pair of positive integers $(m,n)$. We conjecture that they are unimodal with respect to parity, or equivalently, $(1+q)C_{m+n}(q)$ is unimodal. By using generating functions and the constant term method, we verify our conjecture for $mle 5$ in a straightforward way.
In the study of Kostka numbers and Catalan numbers, Kirillov posed a unimodality conjecture for the rectangular Narayana polynomials. We prove that the rectangular Narayana polynomials have only real zeros, and thereby confirm Kirillovs unimodality c
We consider Tuenter polynomials as linear combinations of descending factorials and show that coefficients of these linear combinations are expressed via a Catalan triangle of numbers. We also describe a triangle of coefficients in terms of some polynomials.
The higher $q,t$-Catalan polynomial $C^{(m)}_n(q,t)$ can be defined combinatorially as a weighted sum of lattice paths contained in certain triangles, or algebraically as a complicated sum of rational functions indexed by partitions of $n$. This pape
In this paper we shall survey the various methods of evaluating Hankel determinants and as an illustration we evaluate some Hankel determinants of a q-analogue of Catalan numbers. Here we consider $frac{(aq;q)_{n}}{(abq^{2};q)_{n}}$ as a q-analogue o
We first establish the result that the Narayana polynomials can be represented as the integrals of the Legendre polynomials. Then we represent the Catalan numbers in terms of the Narayana polynomials by three different identities. We give three diffe