ﻻ يوجد ملخص باللغة العربية
A strong edge-coloring of a graph $G$ is an edge-coloring such that any two edges on a path of length three receive distinct colors. We denote the strong chromatic index by $chi_{s}(G)$ which is the minimum number of colors that allow a strong edge-coloring of $G$. ErdH{o}s and Nev{s}etv{r}il conjectured in 1985 that the upper bound of $chi_{s}(G)$ is $frac{5}{4}Delta^{2}$ when $Delta$ is even and $frac{1}{4}(5Delta^{2}-2Delta +1)$ when $Delta$ is odd, where $Delta$ is the maximum degree of $G$. The conjecture is proved right when $Deltaleq3$. The best known upper bound for $Delta=4$ is 22 due to Cranston previously. In this paper we extend the result of Cranston to list strong edge-coloring, that is to say, we prove that when $Delta=4$ the upper bound of list strong chromatic index is 22.
If the vertices of a graph $G$ are colored with $k$ colors such that no adjacent vertices receive the same color and the sizes of any two color classes differ by at most one, then $G$ is said to be equitably $k$-colorable. Let $|G|$ denote the number
A {em strong $k$-edge-coloring} of a graph $G$ is a mapping from $E(G)$ to ${1,2,ldots,k}$ such that every two adjacent edges or two edges adjacent to the same edge receive distinct colors. The {em strong chromatic index} $chi_s(G)$ of a graph $G$ is
Let $G$ be a simple graph with maximum degree $Delta(G)$. A subgraph $H$ of $G$ is overfull if $|E(H)|>Delta(G)lfloor |V(H)|/2 rfloor$. Chetwynd and Hilton in 1985 conjectured that a graph $G$ with $Delta(G)>|V(G)|/3$ has chromatic index $Delta(G)$ i
Motivated by the ErdH{o}s-Faber-Lovasz (EFL) conjecture for hypergraphs, we consider the list edge coloring of linear hypergraphs. We discuss several conjectures for list edge coloring linear hypergraphs that generalize both EFL and Vizings theorem f
An incidence of an undirected graph G is a pair $(v,e)$ where $v$ is a vertex of $G$ and $e$ an edge of $G$ incident with $v$. Two incidences $(v,e)$ and $(w,f)$ are adjacent if one of the following holds: (i) $v = w$, (ii) $e = f$ or (iii) $vw = e$