ترغب بنشر مسار تعليمي؟ اضغط هنا

Zealotry and Influence Maximization in the Voter Model: When to Target Zealots?

74   0   0.0 ( 0 )
 نشر من قبل Guillermo Romero Moreno
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we study influence maximization in the voter model in the presence of biased voters (or zealots) on complex networks. Under what conditions should an external controller with finite budget who aims at maximizing its influence over the system target zealots? Our analysis, based on both analytical and numerical results, shows a rich diagram of preferences and degree-dependencies of allocations to zealots and normal agents varying with the budget. We find that when we have a large budget or for low levels of zealotry, optimal strategies should give larger allocations to zealots and allocations are positively correlated with node degree. In contrast, for low budgets or highly-biased zealots, optimal strategies give higher allocations to normal agents, with some residual allocations to zealots, and allocations to both types of agents decrease with node degree. Our results emphasize that heterogeneity in agent properties strongly affects strategies for influence maximization on heterogeneous networks.



قيم البحث

اقرأ أيضاً

The noisy voter model is a stylised representation of opinion dynamics. Individuals copy opinions from other individuals, and are subject to spontaneous state changes. In the case of two opinion states this model is known to have a noise-driven trans ition between a unimodal phase, in which both opinions are present, and a bimodal phase in which one of the opinions dominates. The presence of zealots can remove the unimodal and bimodal phases in the model with two opinion states. Here, we study the effects of zealots in noisy voter models with M>2 opinion states on complete interaction graphs. We find that the phase behaviour diversifies, with up to six possible qualitatively different types of stationary states. The presence of zealots removes some of these phases, but not all. We analyse situations in which zealots affect the entire population, or only a fraction of agents, and show that this situation corresponds to a single-community model with a fractional number of zealots, further enriching the phase diagram. Our study is conducted analytically based on effective birth-death dynamics for the number of individuals holding a given opinion. Results are confirmed in numerical simulations.
The voter model has been studied extensively as a paradigmatic opinion dynamics model. However, its ability for modeling real opinion dynamics has not been addressed. We introduce a noisy voter model (accounting for social influence) with agents recu rrent mobility (as a proxy for social context), where the spatial and population diversity are taken as inputs to the model. We show that the dynamics can be described as a noisy diffusive process that contains the proper anysotropic coupling topology given by population and mobility heterogeneity. The model captures statistical features of the US presidential elections as the stationary vote-share fluctuations across counties, and the long-range spatial correlations that decay logarithmically with the distance. Furthermore, it recovers the behavior of these properties when a real-space renormalization is performed by coarse-graining the geographical scale from county level through congressional districts and up to states. Finally, we analyze the role of the mobility range and the randomness in decision making which are consistent with the empirical observations.
In social networks, the collective behavior of large populations can be shaped by a small set of influencers through a cascading process induced by peer pressure. For large-scale networks, efficient identification of multiple influential spreaders wi th a linear algorithm in threshold models that exhibit a first-order transition still remains a challenging task. Here we address this issue by exploring the collective influence in general threshold models of behavior cascading. Our analysis reveals that the importance of spreaders is fixed by the subcritical paths along which cascades propagate: the number of subcritical paths attached to each spreader determines its contribution to global cascades. The concept of subcritical path allows us to introduce a linearly scalable algorithm for massively large-scale networks. Results in both synthetic random graphs and real networks show that the proposed method can achieve larger collective influence given same number of seeds compared with other linearly scalable heuristic approaches.
147 - Sven Banisch , Ricardo Lima 2012
For Agent Based Models, in particular the Voter Model (VM), a general framework of aggregation is developed which exploits the symmetries of the agent network $G$. Depending on the symmetry group $Aut_{omega} (N)$ of the weighted agent network, certa in ensembles of agent configurations can be interchanged without affecting the dynamical properties of the VM. These configurations can be aggregated into the same macro state and the dynamical process projected onto these states is, contrary to the general case, still a Markov chain. The method facilitates the analysis of the relation between microscopic processes and a their aggregation to a macroscopic level of description and informs about the complexity of a system introduced by heterogeneous interaction relations. In some cases the macro chain is solvable.
We study the Axelrods cultural adaptation model using the concept of cluster size entropy, $S_{c}$ that gives information on the variability of the cultural cluster size present in the system. Using networks of different topologies, from regular to r andom, we find that the critical point of the well-known nonequilibrium monocultural-multicultural (order-disorder) transition of the Axelrod model is unambiguously given by the maximum of the $S_{c}(q)$ distributions. The width of the cluster entropy distributions can be used to qualitatively determine whether the transition is first- or second-order. By scaling the cluster entropy distributions we were able to obtain a relationship between the critical cultural trait $q_c$ and the number $F$ of cultural features in regular networks. We also analyze the effect of the mass media (external field) on social systems within the Axelrod model in a square network. We find a new partially ordered phase whose largest cultural cluster is not aligned with the external field, in contrast with a recent suggestion that this type of phase cannot be formed in regular networks. We draw a new $q-B$ phase diagram for the Axelrod model in regular networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا