ترغب بنشر مسار تعليمي؟ اضغط هنا

Coulomb interactions and renormalization of semi-Dirac fermions near a topological Lifshitz transition

52   0   0.0 ( 0 )
 نشر من قبل Valeri Kotov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We aim to understand how the spectrum of semi-Dirac fermions is renormalized due to long-range Coulomb electron-electron interactions at a topological Lifshitz transition, where two Dirac cones merge. At the transition, the electronic spectrum is characterized by massive quadratic dispersion in one direction, while it remains linear in the other. We have found that, to lowest order, the unconventional log squared (double logarithmic) correction to the quasiparticle mass in bare perturbation theory leads to resummation into strong mass renormalization in the exact full solution of the perturbative renormalization group equations. This behavior effectively wipes out the curvature of the dispersion and leads to Dirac cone restoration at low energy: the system flows towards Dirac dispersion which is anisotropic but linear in momentum, with interaction-depended logarithmic modulation. The Berry phase associated with the restored critical Dirac spectrum is zero - a property guaranteed by time-reversal symmetry and unchanged by renormalization. Our results are in contrast with the behavior that has been found within the large-$N$ approach.



قيم البحث

اقرأ أيضاً

A topological Dirac semimetal is a novel state of quantum matter which has recently attracted much attention as an apparent 3D version of graphene. In this paper, we report critically important results on the electronic structure of the 3D Dirac semi metal Na3Bi at a surface that reveals its nontrivial groundstate. Our studies, for the first time, reveal that the two 3D Dirac cones go through a topological change in the constant energy contour as a function of the binding energy, featuring a Lifshitz point, which is missing in a strict 3D analog of graphene (in other words Na3Bi is not a true 3D analog of graphene). Our results identify the first example of a band saddle point singularity in 3D Dirac materials. This is in contrast to its 2D analogs such as graphene and the helical Dirac surface states of a topological insulator. The observation of multiple Dirac nodes in Na3Bi connecting via a Lifshitz point along its crystalline rotational axis away from the Kramers point serves as a decisive signature for the symmetry-protected nature of the Dirac semimetals topological groundstate.
A continuous deformation of a Hamiltonian possessing at low energy two Dirac points of opposite chiralities can lead to a gap opening by merging of the two Dirac points. In two dimensions, the critical Hamiltonian possesses a semi-Dirac spectrum: lin ear in one direction but quadratic in the other. We study the transport properties across such a transition, from a Dirac semi-metal through a semi-Dirac phase towards a gapped phase. Using both a Boltzmann approach and a diagrammatic Kubo approach, we describe the conductivity tensor within the diffusive regime. In particular, we show that both the anisotropy of the Fermi surface and the Dirac nature of the eigenstates combine to give rise to anisotropic transport times, manifesting themselves through an unusual matrix self-energy.
We consider a screened Coulomb interaction between electrons in graphene and determine their dynamic response functions, such as a longitudinal and a transverse electric conductivity and a polarization function and compare them to the corresponding q uantities in the short-range interaction model. The calculations are performed to all orders for short-range interaction by taking into account the self-energy renormalization of the electron velocity and using a ladder approximation to account for the vertex corrections, ensuring that the Ward identity (charge conservation law) is satisfied. Our findings predict a resonant response of interacting electron-hole pairs at a particular frequency below the threshold $qv=omega$ and further predict an instability for sufficiently strong interactions.
Dirac fermions are actively investigated, and the discovery of the quantized anomalous Hall effect of massive Dirac fermions has spurred the promise of low-energy electronics. Some materials hosting Dirac fermions are natural platforms for interlayer coherence effects such as Coulomb drag and exciton condensation. Here we determine the role played by the anomalous Hall effect in Coulomb drag in massive Dirac fermion systems. We focus on topological insulator films with out-of plane magnetizations in both the active and passive layers. The transverse response of the active layer is dominated by a topological term arising from the Berry curvature. We show that the topological mechanism does not contribute to Coulomb drag, yet the longitudinal drag force in the passive layer gives rise to a transverse drag current. This anomalous Hall drag current is independent of the active-layer magnetization, a fact that can be verified experimentally. It depends non-monotonically on the passive-layer magnetization, exhibiting a peak that becomes more pronounced at low densities. These findings should stimulate new experiments and quantitative studies of anomalous Hall drag.
While many physical properties of graphene can be understood qualitatively on the basis of bare Dirac bands, there is specific evidence that electron-electron (EE) and electron-phonon (EP) interactions can also play an important role. We discuss stra tegies for extracting separate images of the EE and EP interactions as they present themselves in the electron spectral density and related self-energies. While for momentum, $k$, equal to its Fermi value, $k_F$, a composite structure is obtained which can be difficult to separate into its two constituent parts, at smaller values of $k$ the spectral function shows distinct incoherent sidebands on the left and right of the main quasiparticle line. These image respectively the EE and EP interactions, each being most prominent in its own energy window. We employ a maximum entropy inversion technique on the self energy to reveal the electron-phonon spectral density separate from the excitation spectrum due to coulomb correlations. Our calculations show that this technique can provide important new insights into inelastic scattering processes in graphene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا