ﻻ يوجد ملخص باللغة العربية
We consider a screened Coulomb interaction between electrons in graphene and determine their dynamic response functions, such as a longitudinal and a transverse electric conductivity and a polarization function and compare them to the corresponding quantities in the short-range interaction model. The calculations are performed to all orders for short-range interaction by taking into account the self-energy renormalization of the electron velocity and using a ladder approximation to account for the vertex corrections, ensuring that the Ward identity (charge conservation law) is satisfied. Our findings predict a resonant response of interacting electron-hole pairs at a particular frequency below the threshold $qv=omega$ and further predict an instability for sufficiently strong interactions.
We evaluate the dynamic structure factor $S(q,omega)$ of interacting one-dimensional spinless fermions with a nonlinear dispersion relation. The combined effect of the nonlinear dispersion and of the interactions leads to new universal features of $S
We aim to understand how the spectrum of semi-Dirac fermions is renormalized due to long-range Coulomb electron-electron interactions at a topological Lifshitz transition, where two Dirac cones merge. At the transition, the electronic spectrum is cha
We study the repulsive polaron problem in a two-component two-dimensional system of fermionic atoms. We use two different interaction models: a short-range (hard-disk) potential and a dipolar potential. In our approach, all the atoms have the same ma
Hesselmann {it et al}.~question one of our conclusions, namely, the suppression of Fermi velocity at the Gross-Neveu critical point for the specific case of vanishing long-range interactions and at zero energy. The possibility they raise could occur
Dirac fermions are actively investigated, and the discovery of the quantized anomalous Hall effect of massive Dirac fermions has spurred the promise of low-energy electronics. Some materials hosting Dirac fermions are natural platforms for interlayer