ﻻ يوجد ملخص باللغة العربية
We consider two less-emphasized temporal properties of video: 1. Temporal cues are fine-grained; 2. Temporal modeling needs reasoning. To tackle both problems at once, we exploit approximated bilinear modules (ABMs) for temporal modeling. There are two main points making the modules effective: two-layer MLPs can be seen as a constraint approximation of bilinear operations, thus can be used to construct deep ABMs in existing CNNs while reusing pretrained parameters; frame features can be divided into static and dynamic parts because of visual repetition in adjacent frames, which enables temporal modeling to be more efficient. Multiple ABM variants and implementations are investigated, from high performance to high efficiency. Specifically, we show how two-layer subnets in CNNs can be converted to temporal bilinear modules by adding an auxiliary-branch. Besides, we introduce snippet sampling and shifting inference to boost sparse-frame video classification performance. Extensive ablation studies are conducted to show the effectiveness of proposed techniques. Our models can outperform most state-of-the-art methods on Something-Something v1 and v2 datasets without Kinetics pretraining, and are also competitive on other YouTube-like action recognition datasets. Our code is available on https://github.com/zhuxinqimac/abm-pytorch.
Temporal modeling in videos is a fundamental yet challenging problem in computer vision. In this paper, we propose a novel Temporal Bilinear (TB) model to capture the temporal pairwise feature interactions between adjacent frames. Compared with some
Understanding temporal information and how the visual world changes over time is a fundamental ability of intelligent systems. In video understanding, temporal information is at the core of many current challenges, including compression, efficient in
The goal of the emph{alignment problem} is to align a (given) point cloud $P = {p_1,cdots,p_n}$ to another (observed) point cloud $Q = {q_1,cdots,q_n}$. That is, to compute a rotation matrix $R in mathbb{R}^{3 times 3}$ and a translation vector $t in
Lip-reading aims to recognize speech content from videos via visual analysis of speakers lip movements. This is a challenging task due to the existence of homophemes-words which involve identical or highly similar lip movements, as well as diverse li
Despite the recent success of neural networks in image feature learning, a major problem in the video domain is the lack of sufficient labeled data for learning to model temporal information. In this paper, we propose an unsupervised temporal modelin