ﻻ يوجد ملخص باللغة العربية
Lip-reading aims to recognize speech content from videos via visual analysis of speakers lip movements. This is a challenging task due to the existence of homophemes-words which involve identical or highly similar lip movements, as well as diverse lip appearances and motion patterns among the speakers. To address these challenges, we propose a novel lip-reading model which captures not only the nuance between words but also styles of different speakers, by a multi-grained spatio-temporal modeling of the speaking process. Specifically, we first extract both frame-level fine-grained features and short-term medium-grained features by the visual front-end, which are then combined to obtain discriminative representations for words with similar phonemes. Next, a bidirectional ConvLSTM augmented with temporal attention aggregates spatio-temporal information in the entire input sequence, which is expected to be able to capture the coarse-gained patterns of each word and robust to various conditions in speaker identity, lighting conditions, and so on. By making full use of the information from different levels in a unified framework, the model is not only able to distinguish words with similar pronunciations, but also becomes robust to appearance changes. We evaluate our method on two challenging word-level lip-reading benchmarks and show the effectiveness of the proposed method, which also demonstrate the above claims.
Predicting the future paths of an agents neighbors accurately and in a timely manner is central to the autonomous applications for collision avoidance. Conventional approaches, e.g., LSTM-based models, take considerable computational costs in the pre
This paper presents our solution to the AVA-Kinetics Crossover Challenge of ActivityNet workshop at CVPR 2021. Our solution utilizes multiple types of relation modeling methods for spatio-temporal action detection and adopts a training strategy to in
This paper proposes a novel lip-reading driven deep learning framework for speech enhancement. The proposed approach leverages the complementary strengths of both deep learning and analytical acoustic modelling (filtering based approach) as compared
Lip reading, also known as visual speech recognition, aims to recognize the speech content from videos by analyzing the lip dynamics. There have been several appealing progress in recent years, benefiting much from the rapidly developed deep learning
Lip sync has emerged as a promising technique for generating mouth movements from audio signals. However, synthesizing a high-resolution and photorealistic virtual news anchor is still challenging. Lack of natural appearance, visual consistency, and