ﻻ يوجد ملخص باللغة العربية
Support Vector Machines (SVMs) are among the most popular and the best performing classification algorithms. Various approaches have been proposed to reduce the high computation and memory cost when training and predicting based on large-scale datasets with kernel SVMs. A popular one is the linearization framework, which successfully builds a bridge between the $L_1$-loss kernel SVM and the $L_1$-loss linear SVM. For linear SVMs, very recently, a semismooth Newtons method is proposed. It is shown to be very competitive and have low computational cost. Consequently, a natural question is whether it is possible to develop a fast semismooth Newtons algorithm for kernel SVMs. Motivated by this question and the idea in linearization framework, in this paper, we focus on the $L_2$-loss kernel SVM and propose a semismooth Newtons method based linearization and approximation approach for it. The main idea of this approach is to first set up an equivalent linear SVM, then apply the Nystrom method to approximate the kernel matrix, based on which a reduced linear SVM is obtained. Finally, the fast semismooth Newtons method is employed to solve the reduced linear SVM. We also provide some theoretical analyses on the approximation of the kernel matrix. The advantage of the proposed approach is that it maintains low computational cost and keeps a fast convergence rate. Results of extensive numerical experiments verify the efficiency of the proposed approach in terms of both predicting accuracy and speed.
Support vector machines (SVMs) are successful modeling and prediction tools with a variety of applications. Previous work has demonstrated the superiority of the SVMs in dealing with the high dimensional, low sample size problems. However, the numeri
Support vector machine is an important and fundamental technique in machine learning. In this paper, we apply a semismooth Newton method to solve two typical SVM models: the L2-loss SVC model and the epsilon-L2-loss SVR model. The semismooth Newton m
A widely-used tool for binary classification is the Support Vector Machine (SVM), a supervised learning technique that finds the maximum margin linear separator between the two classes. While SVMs have been well studied in the batch (offline) setting
The diversification (generating slightly varying separating discriminators) of Support Vector Machines (SVMs) for boosting has proven to be a challenge due to the strong learning nature of SVMs. Based on the insight that perturbing the SVM kernel may
A rapid pattern-recognition approach to characterize drivers curve-negotiating behavior is proposed. To shorten the recognition time and improve the recognition of driving styles, a k-means clustering-based support vector machine ( kMC-SVM) method is