ﻻ يوجد ملخص باللغة العربية
Support vector machines (SVMs) are successful modeling and prediction tools with a variety of applications. Previous work has demonstrated the superiority of the SVMs in dealing with the high dimensional, low sample size problems. However, the numerical difficulties of the SVMs will become severe with the increase of the sample size. Although there exist many solvers for the SVMs, only few of them are designed by exploiting the special structures of the SVMs. In this paper, we propose a highly efficient sparse semismooth Newton based augmented Lagrangian method for solving a large-scale convex quadratic programming problem with a linear equality constraint and a simple box constraint, which is generated from the dual problems of the SVMs. By leveraging the primal-dual error bound result, the fast local convergence rate of the augmented Lagrangian method can be guaranteed. Furthermore, by exploiting the second-order sparsity of the problem when using the semismooth Newton method,the algorithm can efficiently solve the aforementioned difficult problems. Finally, numerical comparisons demonstrate that the proposed algorithm outperforms the current state-of-the-art solvers for the large-scale SVMs.
Augmented Lagrangian method (also called as method of multipliers) is an important and powerful optimization method for lots of smooth or nonsmooth variational problems in modern signal processing, imaging, optimal control and so on. However, one usu
Support vector machine is an important and fundamental technique in machine learning. In this paper, we apply a semismooth Newton method to solve two typical SVM models: the L2-loss SVC model and the epsilon-L2-loss SVR model. The semismooth Newton m
The octagonal shrinkage and clustering algorithm for regression (OSCAR), equipped with the $ell_1$-norm and a pair-wise $ell_{infty}$-norm regularizer, is a useful tool for feature selection and grouping in high-dimensional data analysis. The computa
Support vector machine (SVM) has proved to be a successful approach for machine learning. Two typical SVM models are the L1-loss model for support vector classification (SVC) and $epsilon$-L1-loss model for support vector regression (SVR). Due to the
Total generalization variation (TGV) is a very powerful and important regularization for various inverse problems and computer vision tasks. In this paper, we proposed a semismooth Newton based augmented Lagrangian method to solve this problem. The a