ﻻ يوجد ملخص باللغة العربية
We investigate the space-time regularity of the local time associated to Volterra-Levy processes, including Volterra processes driven by $alpha$-stable processes for $alphain(0,2]$. We show that the spatial regularity of the local time for Volterra-Levy process is $P$-a.s. inverse proportionally to the singularity of the associated Volterra kernel. We apply our results to the investigation of path-wise regularizing effects obtained by perturbaPtion of ODEs by a Volterra-Levy process which has sufficiently regular local time. Following along the lines of [15], we show existence, uniqueness and differentiablility of the flow associated to such equations.
We construct an efficient integrator for stochastic differential systems driven by Levy processes. An efficient integrator is a strong approximation that is more accurate than the corresponding stochastic Taylor approximation, to all orders and indep
This paper is concerned with the switching game of a one-dimensional backward stochastic differential equation (BSDE). The associated Bellman-Isaacs equation is a system of matrix-valued BSDEs living in a special unbounded convex domain with reflecti
We consider a general class of high order weak approximation schemes for stochastic differential equations driven by Levy processes with infinite activity. These schemes combine a compound Poisson approximation for the jump part of the Levy process w
We consider a class of semilinear Volterra type stochastic evolution equation driven by multiplicative Gaussian noise. The memory kernel, not necessarily analytic, is such that the deterministic linear equation exhibits a parabolic character. Under a
We derive sufficient conditions for the differentiability of all orders for the flow of stochastic differential equations with jumps, and prove related $L^p$-integrability results for all orders. Our results extend similar results obtained in [Kun04]