ترغب بنشر مسار تعليمي؟ اضغط هنا

Existence, uniqueness and regularity for a class of semilinear stochastic Volterra equations with multiplicative noise

135   0   0.0 ( 0 )
 نشر من قبل Mihaly Kovacs Dr
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a class of semilinear Volterra type stochastic evolution equation driven by multiplicative Gaussian noise. The memory kernel, not necessarily analytic, is such that the deterministic linear equation exhibits a parabolic character. Under appropriate Lipschitz-type and linear growth assumptions on the nonlinear terms we show that the unique mild solution is mean-$p$ Holder continuous with values in an appropriate Sobolev space depending on the kernel and the data. In particular, we obtain pathwise space-time (Sobolev-Holder) regularity of the solution together with a maximal type bound on the spatial Sobolev norm. As one of the main technical tools we establish a smoothing property of the derivative of the deterministic evolution operator family.



قيم البحث

اقرأ أيضاً

We provide existence, uniqueness and stability results for affine stochastic Volterra equations with $L^1$-kernels and jumps. Such equations arise as scaling limits of branching processes in population genetics and self-exciting Hawkes processes in m athematical finance. The strategy we adopt for the existence part is based on approximations using stochastic Volterra equations with $L^2$-kernels combined with a general stability result. Most importantly, we establish weak uniqueness using a duality argument on the Fourier--Laplace transform via a deterministic Riccati--Volterra integral equation. We illustrate the applicability of our results on Hawkes processes and a class of hyper-rough Volterra Heston models with a Hurst index $H in (-1/2,1/2]$.
In this paper we shall establish an existence and uniqueness result for solutions of multidimensional, time dependent, stochastic differential equations driven simultaneously by a multidimensional fractional Brownian motion with Hurst parameter $H > frac{1}{2} and a multidimensional standard Brownian motion under a weaker condition than the Lipschitz one.
We study the existence and multiplicity of nonnegative solutions, as well as the behaviour of corresponding parameter-dependent branches, to the equation $-Delta u = (1-u) u^m - lambda u^n$ in a bounded domain $Omega subset mathbb{R}^N$ endowed with the zero Dirichlet boundary data, where $0<m leq 1$ and $n>0$. When $lambda > 0$, the obtained solutions can be seen as steady states of the corresponding reaction-diffusion equation describing a model of isothermal autocatalytic chemical reaction with termination. In addition to the main new results, we formulate a few relevant conjectures.
155 - Leonid Mytnik 2008
We prove pathwise uniqueness for solutions of parabolic stochastic pdes with multiplicative white noise if the coefficient is Holder continuous of index $gamma>3/4$. The method of proof is an infinite-dimensional version of the Yamada-Watanabe argument for ordinary stochastic differential equations.
For semilinear stochastic evolution equations whose coefficients are more general than the classical global Lipschitz, we present results on the strong convergence rates of numerical discretizations. The proof of them provides a new approach to stron g convergence analysis of numerical discretizations for a large family of second order parabolic stochastic partial differential equations driven by space-time white noises. We apply these results to the stochastic advection-diffusion-reaction equation with a gradient term and multiplicative white noise, and show that the strong convergence rate of a fully discrete scheme constructed by spectral Galerkin approximation and explicit exponential integrator is exactly $frac12$ in space and $frac14$ in time. Compared with the optimal regularity of the mild solution, it indicates that the spetral Galerkin approximation is superconvergent and the convergence rate of the exponential integrator is optimal. Numerical experiments support our theoretical analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا