ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Ground States from Reinforcement Learning

89   0   0.0 ( 0 )
 نشر من قبل Austen Lamacraft
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Finding the ground state of a quantum mechanical system can be formulated as an optimal control problem. In this formulation, the drift of the optimally controlled process is chosen to match the distribution of paths in the Feynman--Kac (FK) representation of the solution of the imaginary time Schrodinger equation. This provides a variational principle that can be used for reinforcement learning of a neural representation of the drift. Our approach is a drop-in replacement for path integral Monte Carlo, learning an optimal importance sampler for the FK trajectories. We demonstrate the applicability of our approach to several problems of one-, two-, and many-particle physics.



قيم البحث

اقرأ أيضاً

We introduce reinforcement learning (RL) formulations of the problem of finding the ground state of a many-body quantum mechanical model defined on a lattice. We show that stoquastic Hamiltonians - those without a sign problem - have a natural decomp osition into stochastic dynamics and a potential representing a reward function. The mapping to RL is developed for both continuous and discrete time, based on a generalized Feynman-Kac formula in the former case and a stochastic representation of the Schrodinger equation in the latter. We discuss the application of this mapping to the neural representation of quantum states, spelling out the advantages over approaches based on direct representation of the wavefunction of the system.
Quantum Machine Learning (QML) is a young but rapidly growing field where quantum information meets machine learning. Here, we will introduce a new QML model generalizing the classical concept of Reinforcement Learning to the quantum domain, i.e. Qua ntum Reinforcement Learning (QRL). In particular we apply this idea to the maze problem, where an agent has to learn the optimal set of actions in order to escape from a maze with the highest success probability. To perform the strategy optimization, we consider an hybrid protocol where QRL is combined with classical deep neural networks. In particular, we find that the agent learns the optimal strategy in both the classical and quantum regimes, and we also investigate its behaviour in a noisy environment. It turns out that the quantum speedup does robustly allow the agent to exploit useful actions also at very short time scales, with key roles played by the quantum coherence and the external noise. This new framework has the high potential to be applied to perform different tasks (e.g. high transmission/processing rates and quantum error correction) in the new-generation Noisy Intermediate-Scale Quantum (NISQ) devices whose topology engineering is starting to become a new and crucial control knob for practical applications in real-world problems. This work is dedicated to the memory of Peter Wittek.
We review the development of generative modeling techniques in machine learning for the purpose of reconstructing real, noisy, many-qubit quantum states. Motivated by its interpretability and utility, we discuss in detail the theory of the restricted Boltzmann machine. We demonstrate its practical use for state reconstruction, starting from a classical thermal distribution of Ising spins, then moving systematically through increasingly complex pure and mixed quantum states. Intended for use on experimental noisy intermediate-scale quantum (NISQ) devices, we review recent efforts in reconstruction of a cold atom wavefunction. Finally, we discuss the outlook for future experimental state reconstruction using machine learning, in the NISQ era and beyond.
Classical chimera states are paradigmatic examples of partial synchronization patterns emerging in nonlinear dynamics. These states are characterized by the spatial coexistence of two dramatically different dynamical behaviors, i.e., synchronized and desynchronized dynamics. Our aim in this contribution is to discuss signatures of chimera states in quantum mechanics. We study a network with a ring topology consisting of N coupled quantum Van der Pol oscillators. We describe the emergence of chimera-like quantum correlations in the covariance matrix. Further, we establish the connection of chimera states to quantum information theory by describing the quantum mutual information for a bipartite state of the network.
Some problems in physics can be handled only after a suitable textit{ansatz }solution has been guessed. Such method is therefore resilient to generalization, resulting of limited scope. The coherent transport by adiabatic passage of a quantum state t hrough an array of semiconductor quantum dots provides a par excellence example of such approach, where it is necessary to introduce its so called counter-intuitive control gate ansatz pulse sequence. Instead, deep reinforcement learning technique has proven to be able to solve very complex sequential decision-making problems involving competition between short-term and long-term rewards, despite a lack of prior knowledge. We show that in the above problem deep reinforcement learning discovers control sequences outperforming the textit{ansatz} counter-intuitive sequence. Even more interesting, it discovers novel strategies when realistic disturbances affect the ideal system, with better speed and fidelity when energy detuning between the ground states of quantum dots or dephasing are added to the master equation, also mitigating the effects of losses. This method enables online update of realistic systems as the policy convergence is boosted by exploiting the prior knowledge when available. Deep reinforcement learning proves effective to control dynamics of quantum states, and more generally it applies whenever an ansatz solution is unknown or insufficient to effectively treat the problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا