ﻻ يوجد ملخص باللغة العربية
Quantum Machine Learning (QML) is a young but rapidly growing field where quantum information meets machine learning. Here, we will introduce a new QML model generalizing the classical concept of Reinforcement Learning to the quantum domain, i.e. Quantum Reinforcement Learning (QRL). In particular we apply this idea to the maze problem, where an agent has to learn the optimal set of actions in order to escape from a maze with the highest success probability. To perform the strategy optimization, we consider an hybrid protocol where QRL is combined with classical deep neural networks. In particular, we find that the agent learns the optimal strategy in both the classical and quantum regimes, and we also investigate its behaviour in a noisy environment. It turns out that the quantum speedup does robustly allow the agent to exploit useful actions also at very short time scales, with key roles played by the quantum coherence and the external noise. This new framework has the high potential to be applied to perform different tasks (e.g. high transmission/processing rates and quantum error correction) in the new-generation Noisy Intermediate-Scale Quantum (NISQ) devices whose topology engineering is starting to become a new and crucial control knob for practical applications in real-world problems. This work is dedicated to the memory of Peter Wittek.
Finding the ground state of a quantum mechanical system can be formulated as an optimal control problem. In this formulation, the drift of the optimally controlled process is chosen to match the distribution of paths in the Feynman--Kac (FK) represen
We introduce reinforcement learning (RL) formulations of the problem of finding the ground state of a many-body quantum mechanical model defined on a lattice. We show that stoquastic Hamiltonians - those without a sign problem - have a natural decomp
Classical models with complex energy landscapes represent a perspective avenue for the near-term application of quantum simulators. Until now, many theoretical works studied the performance of quantum algorithms for models with a unique ground state.
The solution space of many classical optimization problems breaks up into clusters which are extensively distant from one another in the Hamming metric. Here, we show that an analogous quantum clustering phenomenon takes place in the ground state sub
The key approaches for machine learning, especially learning in unknown probabilistic environments are new representations and computation mechanisms. In this paper, a novel quantum reinforcement learning (QRL) method is proposed by combining quantum