ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalized Outer Bounds on the Finite Geometric Sum of Ellipsoids

60   0   0.0 ( 0 )
 نشر من قبل Navid Hashemi
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

General results on convex bodies are reviewed and used to derive an exact closed-form parametric formula for the boundary of the geometric (Minkowski) sum of $k$ ellipsoids in $n$-dimensional Euclidean space. Previously this was done through iterative algorithms in which each new ellipsoid was added to an ellipsoid approximation of the sum of the previous ellipsoids. Here we provide one shot formulas to add $k$ ellipsoids directly with no intermediate approximations required. This allows us to observe a new degree of freedom in the family of ellipsoidal bounds on the geometric sum. We demonstrate an application of these tools to compute the reachable set of a discrete-time dynamical system.



قيم البحث

اقرأ أيضاً

General results on convex bodies are reviewed and used to derive an exact closed-form parametric formula for the boundary of the geometric (Minkowski) sum of $k$ ellipsoids in $n$-dimensional Euclidean space. Previously this was done through iterativ e algorithms in which each new ellipsoid was added to an ellipsoid approximation of the sum of the previous ellipsoids. Here we provide one shot formulas to add $k$ ellipsoids directly with no intermediate approximations required. This allows us to observe a new degree of freedom in the family of ellipsoidal bounds on the geometric sum. We demonstrate an application of these tools to compute the reachable set of a discrete-time dynamical system.
Ellipsoids are a common representation for reachability analysis because they are closed under affine maps and allow conservative approximation of Minkowski sums; this enables one to incorporate uncertainty and linearization error in a dynamical syst em by exapnding the size of the reachable set. Zonotopes, a type of symmetric, convex polytope, are similarly frequently used due to efficient numerical implementation of affine maps and exact Minkowski sums. Both of these representations also enable efficient, convex collision detection for fault detection or formal verification tasks, wherein one checks if the reachable set of a system collides (i.e., intersects) with an unsafe set. However, both representations often result in conservative representations for reachable sets of arbitrary systems, and neither is closed under intersection. Recently, constrained zonotopes and constrained polynomial zonotopes have been shown to overcome some of these conservatism challenges, and are closed under intersection. However, constrained zonotopes can not represent shapes with smooth boundaries such as ellipsoids, and constrained polynomial zonotopes can require solving a non-convex program for collision checking (i.e., fault detection). This paper introduces ellipsotopes, a set representation that is closed under affine maps, Minkowski sums, and intersections. Ellipsotopes combine the advantages of ellipsoids and zonotopes, and enable convex collision checking at the expense of more conservative reachable sets than constrained polynomial zonotopes. The utility of this representation is demonstrated on several examples.
We study the strong structural controllability (SSC) of diffusively coupled networks, where the external control inputs are injected to only some nodes, namely the leaders. For such systems, one measure of controllability is the dimension of strong s tructurally controllable subspace, which is equal to the smallest possible rank of controllability matrix under admissible (positive) coupling weights. In this paper, we compare two tight lower bounds on the dimension of strong structurally controllable subspace: one based on the distances of followers to leaders, and the other based on the graph coloring process known as zero forcing. We show that the distance-based lower bound is usually better than the zero-forcing-based bound when the leaders do not constitute a zero-forcing set. On the other hand, we also show that any set of leaders that can be shown to achieve complete SSC via the distance-based bound is necessarily a zero-forcing set. These results indicate that while the zero-forcing based approach may be preferable when the focus is only on verifying complete SSC, the distance-based approach is usually more informative when partial SSC is also of interest. Furthermore, we also present a novel bound based on the combination of these two approaches, which is always at least as good as, and in some cases strictly greater than, the maximum of the two bounds. We support our analysis with numerical results for various graphs and leader sets.
The complex representation of real-valued instantaneous power may be written as the sum of two complex powers, one Hermitian and the other non-Hermitian, or complementary. A virtue of this representation is that it consists of a power triangle rotati ng around a fixed phasor, thus clarifying what should be meant by the power triangle. The in-phase and quadrature components of complementary power encode for active and non-active power. When instantaneous power is defined for a Thevenin equivalent circuit, these are time-varying real and reactive power components. These claims hold for sinusoidal voltage and current, and for non-sinusoidal voltage and current. Spectral representations of Hermitian, complementary, and instantaneous power show that, frequency-by-frequency, these powers behave exactly as they behave in the single frequency sinusoidal case. Simple hardware diagrams show how instantaneous active and non-active power may be extracted from metered voltage and current, even in certain non-sinusoidal cases.
Average consensus is extensively used in distributed networks for computation and control, where all the agents constantly communicate with each other and update their states in order to reach an agreement. Under a general average consensus algorithm , information exchanged through wireless or wired communication networks could lead to the disclosure of sensitive and private information. In this paper, we propose a privacy-preserving push-sum approach for directed networks that can protect the privacy of all agents while achieving average consensus simultaneously. Each node decomposes its initial state arbitrarily into two substates, and their average equals to the initial state, guaranteeing that the agents state will converge to the accurate average consensus. Only one substate is exchanged by the node with its neighbours over time, and the other one is reserved. That is to say, only the exchanged substate would be visible to an adversary, preventing the initial state information from leakage. Different from the existing state-decomposition approach which only applies to undirected graphs, our proposed approach is applicable to strongly connected digraphs. In addition, in direct contrast to offset-adding based privacy-preserving push-sum algorithm, which is vulnerable to an external eavesdropper, our proposed approach can ensure privacy against both an honest-but-curious node and an external eavesdropper. A numerical simulation is provided to illustrate the effectiveness of the proposed approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا