ﻻ يوجد ملخص باللغة العربية
General results on convex bodies are reviewed and used to derive an exact closed-form parametric formula for the boundary of the geometric (Minkowski) sum of $k$ ellipsoids in $n$-dimensional Euclidean space. Previously this was done through iterative algorithms in which each new ellipsoid was added to an ellipsoid approximation of the sum of the previous ellipsoids. Here we provide one shot formulas to add $k$ ellipsoids directly with no intermediate approximations required. This allows us to observe a new degree of freedom in the family of ellipsoidal bounds on the geometric sum. We demonstrate an application of these tools to compute the reachable set of a discrete-time dynamical system.
General results on convex bodies are reviewed and used to derive an exact closed-form parametric formula for the boundary of the geometric (Minkowski) sum of $k$ ellipsoids in $n$-dimensional Euclidean space. Previously this was done through iterativ
In this paper we consider an extremal problem in geometry. Let $lambda$ be a real number and $A$, $B$ and $C$ be arbitrary points on the unit circle $Gamma$. We give full characterization of the extremal behavior of the function $f(M,lambda)=MA^lambd
The complex representation of real-valued instantaneous power may be written as the sum of two complex powers, one Hermitian and the other non-Hermitian, or complementary. A virtue of this representation is that it consists of a power triangle rotati
Over-the-air computation (AirComp), which leverages the superposition property of wireless multiple-access channel (MAC) and the mathematical tool of function representation, has been considered as a promising technique for effective collection and c
Linear programming (polynomial) techniques are used to obtain lower and upper bounds for the potential energy of spherical designs. This approach gives unified bounds that are valid for a large class of potential functions. Our lower bounds are optim