ترغب بنشر مسار تعليمي؟ اضغط هنا

Lie-Nijenhuis bialgebroids

141   0   0.0 ( 0 )
 نشر من قبل Thiago Drummond
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Thiago Drummond




اسأل ChatGPT حول البحث

We introduce Lie-Nijenhuis bialgebroids as Lie bialgebroids endowed with an additional derivation-like object. They give a complete infinitesimal description of Poisson-Nijenhuis groupoids, and key examples include Poisson-Nijenhuis manifolds, holomorphic Lie bialgebroids and flat Lie bialgebra bundles. To achieve our goal we develop a theory of generalized derivations and their duality, extending the well-established theory of derivations on vector bundles.



قيم البحث

اقرأ أيضاً

294 - Francesco Bonechi 2015
We discuss the role of Poisson-Nijenhuis geometry in the definition of multiplicative integrable models on symplectic groupoids. These are integrable models that are compatible with the groupoid structure in such a way that the set of contour levels of the hamiltonians in involution inherits a topological groupoid structure. We show that every maximal rank PN structure defines such a model. We consider the examples defined on compact hermitian symmetric spaces and studied in [arXiv:1503.07339].
The space of vector-valued forms on any manifold is a graded Lie algebra with respect to the Frolicher-Nijenhuis bracket. In this paper we consider multiplicative vector-valued forms on Lie groupoids and show that they naturally form a graded Lie sub algebra. Along the way, we discuss various examples and different characterizations of multiplicative vector-valued forms.
We study a class of Poisson-Nijenhuis systems defined on compact hermitian symmetric spaces, where the Nijenhuis tensor is defined as the composition of Kirillov-Konstant-Souriau symplectic form with the so called Bruhat-Poisson structure. We determi ne its spectrum. In the case of Grassmannians the eigenvalues are the Gelfand-Tsetlin variables. We introduce the abelian algebra of collective hamiltonians defined by a chain of nested subalgebras and prove complete integrability. By construction, these models are integrable with respect to both Poisson structures. The eigenvalues of the Nijenhuis tensor are a choice of action variables. Our proof relies on an explicit formula for the contravariant connection defined on vector bundles that are Poisson with respect to the Bruhat-Poisson structure.
Bialgebroids (resp. Hopf algebroids) are bialgebras (Hopf algebras) over noncommutative rings. Drinfeld twist techniques are particularly useful in the (deformation) quantization of Lie algebras as well as underlying module algebras (=quantum spaces) . Smash product construction combines these two into the new algebra which, in fact, does not depend on the twist. However, we can turn it into bialgebroid in the twist dependent way. Alternatively, one can use Drinfeld twist techniques in a category of bialgebroids. We show that both techniques indicated in the title: twisting of a bialgebroid or constructing a bialgebroid from the twisted bialgebra give rise to the same result in the case of normalized cocycle twist. This can be useful for better description of a quantum deformed phase space. We argue that within this bialgebroid framework one can justify the use of deformed coordinates (i.e. spacetime noncommutativity) which are frequently postulated in order to explain quantum gravity effects.
124 - Jiefeng Liu , Qi Wang 2020
In this paper, we study pre-Lie analogues of Poisson-Nijenhuis structures and introduce ON-structures on bimodules over pre-Lie algebras. We show that an ON-structure gives rise to a hierarchy of pairwise compatible O-operators. We study solutions of the strong Maurer-Cartan equation on the twilled pre-Lie algebra associated to an O-operator, which gives rise to a pair of ON-structures which are naturally in duality. We show that KVN-structures and HN-structures on a pre-Lie algebra g are corresponding to ON-structures on the bimodule $(mathfrak g^*;mathrm{ad}^*,-R^*)$, and $KVOmega$-structures are corresponding to solutions of the strong Maurer-Cartan equation on a twilled pre-Lie algebra associated to an $s$-matrix.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا