ﻻ يوجد ملخص باللغة العربية
We introduce a high-order numerical scheme for fractional ordinary differential equations with the Caputo derivative. The method is developed by dividing the domain into a number of subintervals, and applying the quadratic interpolation on each subinterval. The method is shown to be unconditionally stable, and for general nonlinear equations, the uniform sharp numerical order $3- u$ can be rigorously proven for sufficiently smooth solutions at all time steps. The proof provides a general guide for proving the sharp order for higher-order schemes in the nonlinear case. Some numerical examples are given to validate our theoretical results.
We propose a high order numerical homogenization method for dissipative ordinary differential equations (ODEs) containing two time scales. Essentially, only first order homogenized model globally in time can be derived. To achieve a high order method
In this paper, we propose third-order semi-discretized schemes in space based on the tempered weighted and shifted Grunwald difference (tempered-WSGD) operators for the tempered fractional diffusion equation. We also show stability and convergence an
The numerical solution of differential equations can be formulated as an inference problem to which formal statistical approaches can be applied. However, nonlinear partial differential equations (PDEs) pose substantial challenges from an inferential
We analyze the qualitative properties and the order of convergence of a splitting scheme for a class of nonlinear stochastic Schrodinger equations driven by additive It^o noise. The class of nonlinearities of interest includes nonlocal interaction cu
In this paper we present a scheme for the numerical solution of one-dimensional stochastic differential equations (SDEs) whose drift belongs to a fractional Sobolev space of negative regularity (a subspace of Schwartz distributions). We obtain a rate