ﻻ يوجد ملخص باللغة العربية
Generative adversarial networks (GANs) have enjoyed tremendous success in image generation and processing, and have recently attracted growing interests in financial modelings. This paper analyzes GANs from the perspectives of mean-field games (MFGs) and optimal transport. More specifically, from the game theoretical perspective, GANs are interpreted as MFGs under Pareto Optimality criterion or mean-field controls; from the optimal transport perspective, GANs are to minimize the optimal transport cost indexed by the generator from the known latent distribution to the unknown true distribution of data. The MFGs perspective of GANs leads to a GAN-based computational method (MFGANs) to solve MFGs: one neural network for the backward Hamilton-Jacobi-Bellman equation and one neural network for the forward Fokker-Planck equation, with the two neural networks trained in an adversarial way. Numerical experiments demonstrate superior performance of this proposed algorithm, especially in the higher dimensional case, when compared with existing neural network approaches.
Though generative adversarial networks (GANs) areprominent models to generate realistic and crisp images,they often encounter the mode collapse problems and arehard to train, which comes from approximating the intrinsicdiscontinuous distribution tran
This paper analyzes a class of infinite-time-horizon stochastic games with singular controls motivated from the partially reversible problem. It provides an explicit solution for the mean-field game (MFG) and presents sensitivity analysis to compare
We investigate the training and performance of generative adversarial networks using the Maximum Mean Discrepancy (MMD) as critic, termed MMD GANs. As our main theoretical contribution, we clarify the situation with bias in GAN loss functions raised
Though recent research has achieved remarkable progress in generating realistic images with generative adversarial networks (GANs), the lack of training stability is still a lingering concern of most GANs, especially on high-resolution inputs and com
Generative Adversarial Networks (GANs) enjoy great success at image generation, but have proven difficult to train in the domain of natural language. Challenges with gradient estimation, optimization instability, and mode collapse have lead practitio