ترغب بنشر مسار تعليمي؟ اضغط هنا

Demystifying MMD GANs

124   0   0.0 ( 0 )
 نشر من قبل Danica J. Sutherland
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the training and performance of generative adversarial networks using the Maximum Mean Discrepancy (MMD) as critic, termed MMD GANs. As our main theoretical contribution, we clarify the situation with bias in GAN loss functions raised by recent work: we show that gradient estimators used in the optimization process for both MMD GANs and Wasserstein GANs are unbiased, but learning a discriminator based on samples leads to biased gradients for the generator parameters. We also discuss the issue of kernel choice for the MMD critic, and characterize the kernel corresponding to the energy distance used for the Cramer GAN critic. Being an integral probability metric, the MMD benefits from training strategies recently developed for Wasserstein GANs. In experiments, the MMD GAN is able to employ a smaller critic network than the Wasserstein GAN, resulting in a simpler and faster-training algorithm with matching performance. We also propose an improved measure of GAN convergence, the Kernel Inception Distance, and show how to use it to dynamically adapt learning rates during GAN training.



قيم البحث

اقرأ أيضاً

The maximum mean discrepancy (MMD) is a kernel-based distance between probability distributions useful in many applications (Gretton et al. 2012), bearing a simple estimator with pleasing computational and statistical properties. Being able to effici ently estimate the variance of this estimator is very helpful to various problems in two-sample testing. Towards this end, Bounliphone et al. (2016) used the theory of U-statistics to derive estimators for the variance of an MMD estimator, and differences between two such estimators. Their estimator, however, drops lower-order terms, and is unnecessarily biased. We show in this note - extending and correcting work of Sutherland et al. (2017) - that we can find a truly unbiased estimator for the actual variance of both the squared MMD estimator and the difference of two correlated squared MMD estimators, at essentially no additional computational cost.
128 - Xiuyuan Cheng , Yao Xie 2021
We present a study of kernel MMD two-sample test statistics in the manifold setting, assuming the high-dimensional observations are close to a low-dimensional manifold. We characterize the property of the test (level and power) in relation to the ker nel bandwidth, the number of samples, and the intrinsic dimensionality of the manifold. Specifically, we show that when data densities are supported on a $d$-dimensional sub-manifold $mathcal{M}$ embedded in an $m$-dimensional space, the kernel MMD two-sample test for data sampled from a pair of distributions $(p, q)$ that are Holder with order $beta$ is consistent and powerful when the number of samples $n$ is greater than $delta_2(p,q)^{-2-d/beta}$ up to certain constant, where $delta_2$ is the squared $ell_2$-divergence between two distributions on manifold. Moreover, to achieve testing consistency under this scaling of $n$, our theory suggests that the kernel bandwidth $gamma$ scales with $n^{-1/(d+2beta)}$. These results indicate that the kernel MMD two-sample test does not have a curse-of-dimensionality when the data lie on the low-dimensional manifold. We demonstrate the validity of our theory and the property of the MMD test for manifold data using several numerical experiments.
Generative adversarial networks (GAN) are a powerful subclass of generative models. Despite a very rich research activity leading to numerous interesting GAN algorithms, it is still very hard to assess which algorithm(s) perform better than others. W e conduct a neutral, multi-faceted large-scale empirical study on state-of-the art models and evaluation measures. We find that most models can reach similar scores with enough hyperparameter optimization and random restarts. This suggests that improvements can arise from a higher computational budget and tuning more than fundamental algorithmic changes. To overcome some limitations of the current metrics, we also propose several data sets on which precision and recall can be computed. Our experimental results suggest that future GAN research should be based on more systematic and objective evaluation procedures. Finally, we did not find evidence that any of the tested algorithms consistently outperforms the non-saturating GAN introduced in cite{goodfellow2014generative}.
The Residual Network (ResNet), proposed in He et al. (2015), utilized shortcut connections to significantly reduce the difficulty of training, which resulted in great performance boosts in terms of both training and generalization error. It was emp irically observed in He et al. (2015) that stacking more layers of residual blocks with shortcut 2 results in smaller training error, while it is not true for shortcut of length 1 or 3. We provide a theoretical explanation for the uniqueness of shortcut 2. We show that with or without nonlinearities, by adding shortcuts that have depth two, the condition number of the Hessian of the loss function at the zero initial point is depth-invariant, which makes training very deep models no more difficult than shallow ones. Shortcuts of higher depth result in an extremely flat (high-order) stationary point initially, from which the optimization algorithm is hard to escape. The shortcut 1, however, is essentially equivalent to no shortcuts, which has a condition number exploding to infinity as the number of layers grows. We further argue that as the number of layers tends to infinity, it suffices to only look at the loss function at the zero initial point. Extensive experiments are provided accompanying our theoretical results. We show that initializing the network to small weights with shortcut 2 achieves significantly better results than random Gaussian (Xavier) initialization, orthogonal initialization, and shortcuts of deeper depth, from various perspectives ranging from final loss, learning dynamics and stability, to the behavior of the Hessian along the learning process.
Generative Adversarial Networks (GANs) have become a popular method to learn a probability model from data. In this paper, we aim to provide an understanding of some of the basic issues surrounding GANs including their formulation, generalization and stability on a simple benchmark where the data has a high-dimensional Gaussian distribution. Even in this simple benchmark, the GAN problem has not been well-understood as we observe that existing state-of-the-art GAN architectures may fail to learn a proper generative distribution owing to (1) stability issues (i.e., convergence to bad local solutions or not converging at all), (2) approximation issues (i.e., having improper global GAN optimizers caused by inappropriate GANs loss functions), and (3) generalizability issues (i.e., requiring large number of samples for training). In this setup, we propose a GAN architecture which recovers the maximum-likelihood solution and demonstrates fast generalization. Moreover, we analyze global stability of different computational approaches for the proposed GAN optimization and highlight their pros and cons. Finally, we outline an extension of our model-based approach to design GANs in more complex setups than the considered Gaussian benchmark.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا