ﻻ يوجد ملخص باللغة العربية
We investigate exemplary the longitudinal optical (LO) mode order in compounds with a plasmon or plasmon-like phonon mode and additional phonon modes. When the oscillator strength of the plasmon or plasmon-like mode is gradually increased, a reordering of the modes takes place. Since it is not possible in crystals with orthorhombic or higher symmetry that a LO mode crosses a transverse optical (TO) modes position, this reordering takes place via mode hybridization. During this mode hybridization, the plasmon or plasmon-like LO mode gradually becomes the originally higher situated LO mode while the latter morphs into the former. As a consequence, an inner (LO-TO) and an outer (TO-LO) mode pair is formed. This process continues until the LO oscillator strength is so high that all other phonons are inverted and form LO-TO pairs within the outer TO-LO mode pair of the plasmon or plasmon-like mode. These insights can be readily transferred to other semiconductors or many mode materials with reststrahlen bands and allow simple mode assignments. These mode assignments will help to understand the nature of surface modes of structured layers of these materials for application of surface plasmon polariton and surface phonon polaritons based metamaterials.
$beta$-Ga$_2$O$_3$ is a promising ultra-wide bandgap semiconductor whose properties can be further enhanced by alloying with Al. Here, using atomic-resolution scanning transmission electron microscopy (STEM), we find the thermodynamically-unstable $g
Based on first-principles calculations, we show that the maximum reachable concentration $x$ in the (Ga$_{1-x}$In$_x$)$_2$O$_3$ alloy in the low-$x$ regime (i.e. In solubility in $beta$-Ga$_2$O$_3$) is around 10%. We then calculate the band alignment
I use first principles calculations to investigate the thermal conductivity of $beta$-In$_2$O$_3$ and compare the results with that of $alpha$-Al$_2$O$_3$, $beta$-Ga$_2$O$_3$, and KTaO$_3$. The calculated thermal conductivity of $beta$-In$_2$O$_3$ ag
Recent breakthroughs in bulk crystal growth of the thermodynamically stable beta phase of gallium oxide ($beta$-Ga$_2$O$_3$) have led to the commercialization of large-area beta-Ga$_2$O$_3$ substrates with subsequent epitaxy on (010) substrates produ
Point defects in crystalline materials often occur in multiple charge states. Although many experimental methods to study and explore point defects are available, techniques to explore the non-equilibrium dynamics of the charge states of these defect