ﻻ يوجد ملخص باللغة العربية
Point defects in crystalline materials often occur in multiple charge states. Although many experimental methods to study and explore point defects are available, techniques to explore the non-equilibrium dynamics of the charge states of these defects at ultrafast (sub-nanosecond) time scales have not been discussed before. We present results from ultrafast optical-pump supercontinuum-probe spectroscopy measurements on $beta$-Ga$_2$O$_3$. The study of point defects in $beta$-Ga$_2$O$_3$ is essential for its establishment as a material platform for high-power electronics and deep-UV optoelectronics. Use of a supercontinuum probe allows us to obtain the time-resolved absorption spectra of material defects under non-equilibrium conditions with picosecond time resolution. The probe absorption spectra shows defect absorption peaks at two energies, $sim$2.2 eV and $sim$1.63 eV, within the 1.3-2.5 eV probe energy bandwidth. The strength of the absorption associated with each peak is time-dependent and the spectral weight shifts from the lower energy peak to the higher energy peak with pump-probe delay. Further, maximum defect absorption is seen for probe polarized along the crystal c-axis. The time-dependent probe absorption spectra and the observed dynamics for all probe wavelengths at all pump-probe delays can be fit with a set of rate equations for a single multi-level defect. Based on first-principles calculations within hybrid density functional theory we attribute the observed absorption features to optical transitions from the valence band to different charge states of Gallium vacancies. Our results demonstrate that broadband ultrafast supercontinuum spectroscopy can be a useful tool to explore charge states of defects and defect dynamics in semiconductors.
We report results from ultrafast two-color optical pump-probe spectroscopy on bulk $beta$-Ga$_2$O$_3$. A two-photon absorption scheme is used to photoexcite carriers with the pump pulse and free-carrier absorption of the probe pulse is used to record
$beta$-Ga$_2$O$_3$ is a promising ultra-wide bandgap semiconductor whose properties can be further enhanced by alloying with Al. Here, using atomic-resolution scanning transmission electron microscopy (STEM), we find the thermodynamically-unstable $g
Based on first-principles calculations, we show that the maximum reachable concentration $x$ in the (Ga$_{1-x}$In$_x$)$_2$O$_3$ alloy in the low-$x$ regime (i.e. In solubility in $beta$-Ga$_2$O$_3$) is around 10%. We then calculate the band alignment
Steep-slope $beta$-Ga$_2$O$_3$ nano-membrane negative capacitance field-effect transistors (NC-FETs) are demonstrated with ferroelectric hafnium zirconium oxide in gate dielectric stack. Subthreshold slope less than 60 mV/dec at room temperature is o
Recent breakthroughs in bulk crystal growth of the thermodynamically stable beta phase of gallium oxide ($beta$-Ga$_2$O$_3$) have led to the commercialization of large-area beta-Ga$_2$O$_3$ substrates with subsequent epitaxy on (010) substrates produ