ﻻ يوجد ملخص باللغة العربية
We study the stationary distribution of the (spread-out) $d$-dimensional contact process from the point of view of site percolation. In this process, vertices of $mathbb{Z}^d$ can be healthy (state 0) or infected (state 1). With rate one infected sites recover, and with rate $lambda$ they transmit the infection to some other vertex chosen uniformly within a ball of radius $R$. The classical phase transition result for this process states that there is a critical value $lambda_c(R)$ such that the process has a non-trivial stationary distribution if and only if $lambda > lambda_c(R)$. In configurations sampled from this stationary distribution, we study nearest-neighbor site percolation of the set of infected sites; the associated percolation threshold is denoted $lambda_p(R)$. We prove that $lambda_p(R)$ converges to $1/(1-p_c)$ as $R$ tends to infinity, where $p_c$ is the threshold for Bernoulli site percolation on $mathbb{Z}^d$. As a consequence, we prove that $lambda_p(R) > lambda_c(R)$ for large enough $R$, answering an open question of Liggett and Steif in the spread-out case.
A little over 25 years ago Pemantle pioneered the study of the contact process on trees, and showed that on homogeneous trees the critical values $lambda_1$ and $lambda_2$ for global and local survival were different. He also considered trees with pe
A little over 25 years ago Pemantle pioneered the study of the contact process on trees, and showed that the critical values $lambda_1$ and $lambda_2$ for global and local survival were different. Here, we will consider the case of trees in which the
Recently, Holmes and Perkins identified conditions which ensure that for a class of critical lattice models the scaling limit of the range is the range of super-Brownian motion. One of their conditions is an estimate on a spatial moment of order high
We consider a contact process on $Z^d$ with two species that interact in a symbiotic manner. Each site can either be vacant or occupied by individuals of species $A$ and/or $B$. Multiple occupancy by the same species at a single site is prohibited. T
We are interested in the spread of an epidemic between two communities that have higher connectivity within than between them. We model the two communities as independent Erdos-Renyi random graphs, each with n vertices and edge probability p = n^{a-1