ﻻ يوجد ملخص باللغة العربية
Recently, Holmes and Perkins identified conditions which ensure that for a class of critical lattice models the scaling limit of the range is the range of super-Brownian motion. One of their conditions is an estimate on a spatial moment of order higher than four, which they verified for the sixth moment for spread-out lattice trees in dimensions $d>8$. Chen and Sakai have proved the required moment estimate for spread-out critical oriented percolation in dimensions $d+1>4+1$. We prove estimates on all moments for the spread-out critical contact process in dimensions $d>4$, which in particular fulfills the spatial moment condition of Holmes and Perkins. Our method of proof is relatively simple, and, as we show, it applies also to oriented percolation and lattice trees. Via the convergence results of Holmes and Perkins, the upper bounds on the spatial moments can in fact be promoted to asymptotic formulas with explicit constants.
We prove that the Fourier transform of the properly-scaled normalized two-point function for sufficiently spread-out long-range oriented percolation with index alpha>0 converges to e^{-C|k|^{alphawedge2}} for some Cin(0,infty) above the upper-critica
We consider an inhomogeneous oriented percolation model introduced by de Lima, Rolla and Valesin. In this model, the underlying graph is an oriented rooted tree in which each vertex points to each of its $d$ children with `short edges, and in additio
We provide a complete proof of the diagrammatic bounds on the lace-expansion coefficients for oriented percolation, which are used in [arXiv:math/0703455] to investigate critical behavior for long-range oriented percolation above 2min{alpha,2} spatial dimensions.
Consider nearest-neighbor oriented percolation in $d+1$ space-time dimensions. Let $rho,eta, u$ be the critical exponents for the survival probability up to time $t$, the expected number of vertices at time $t$ connected from the space-time origin, a
In high dimensional percolation at parameter $p < p_c$, the one-arm probability $pi_p(n)$ is known to decay exponentially on scale $(p_c - p)^{-1/2}$. We show the same statement for the ratio $pi_p(n) / pi_{p_c}(n)$, establishing a form of a hypothes