ﻻ يوجد ملخص باللغة العربية
Magnetism and spin-orbit coupling (SOC) are two quintessential ingredients underlying novel topological transport phenomena in itinerant ferromagnets. When spin-polarized bands support nodal points/lines with band degeneracy that can be lifted by SOC, the nodal structures become a source of Berry curvature; this leads to a large anomalous Hall effect (AHE). Contrary to three-dimensional systems that naturally host nodal points/lines, two-dimensional (2D) systems can possess stable nodal structures only when proper crystalline symmetry exists. Here we show that 2D spin-polarized band structures of perovskite oxides generally support symmetry-protected nodal lines and points that govern both the sign and the magnitude of the AHE. To demonstrate this, we performed angle-resolved photoemission studies of ultrathin films of SrRuO$_3$, a representative metallic ferromagnet with SOC. We show that the sign-changing AHE upon variation in the film thickness, magnetization, and chemical potential can be well explained by theoretical models. Our study is the first to directly characterize the topological band structure of 2D spin-polarized bands and the corresponding AHE, which could facilitate new switchable devices based on ferromagnetic ultrathin films.
Dirac nodal line semimetals (DNLSs) host relativistic quasiparticles in their one-dimensional (1D) Dirac nodal line (DNL) bands that are protected by certain crystalline symmetries. Their novel low-energy fermion quasiparticle excitations and transpo
Strong electronic correlations can produce remarkable phenomena such as metal-insulator transitions and greatly enhance superconductivity, thermoelectricity, or optical non-linearity. In correlated systems, spatially varying charge textures also ampl
We study the magneto-optical Kerr effect (MOKE) in SrRuO$_3$ thin films, uncovering wide regimes of wavelength, temperature, and magnetic field where the Kerr rotation is not simply proportional to the magnetization but instead displays two-component
PdCoO2 , belonging to a family of triangular oxides called delafossite, is one of the most conducting oxides. Its in-plane conductivity is comparable to those of the best metals, and exhibits hydrodynamic electronic transport with extremely long mean
We propose a new topological quantum state of matter---the two-dimensional (2D) Weyl half semimetal (WHS), which features 2D Weyl points at Fermi level belonging to a single spin channel, such that the low-energy electrons are described by fully spin