ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-dimensional Weyl Half Semimetal and Tunable Quantum Anomalous Hall Effect in Monolayer PtCl$_{3}$

161   0   0.0 ( 0 )
 نشر من قبل Xian-Lei Sheng
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a new topological quantum state of matter---the two-dimensional (2D) Weyl half semimetal (WHS), which features 2D Weyl points at Fermi level belonging to a single spin channel, such that the low-energy electrons are described by fully spin-polarized 2D Weyl fermions. We predict its realization in the ground state of monolayer PtCl$_3$. We show that the material is a half metal with an in-plane magnetization, and its Fermi surface consists of a pair of fully spin-polarized Weyl points protected by a mirror symmetry, which are robust against spin-orbit coupling. Remarkably, we show that the WHS state is a critical state at the topological phase transition between two quantum anomalous Hall insulator phases with opposite Chern numbers, such that a switching between quantum anomalous Hall states can be readily achieved by rotating the magnetization direction. Our findings demonstrate that WHS offers new opportunity to control the chiral edge channels, which will be useful for designing new topological electronic devices.



قيم البحث

اقرأ أيضاً

A novel topological insulator with tunable edge states, called quantum spin-quantum anomalous Hall (QSQAH) insulator, is predicted in a heterostructure of a hydrogenated Sb (SbH) monolayer on a LaFeO3 substrate by using ab initio methods. The substra te induces a drastic staggered exchange field in the SbH film, which plays an important role to generate the QSQAH effect. A topologically nontrivial band gap (up to 35 meV) is opened by Rashba spin-orbit coupling, which can be enlarged by strain and electric field. To understand the underlying physical mechanism of the QSQAH effect, a tight-binding model based on px and py orbitals is constructed. With the model, the exotic behaviors of the edge states in the heterostructure are investigated. Dissipationless chiral charge edge states related to one valley are found to emerge along the both sides of the sample, while low-dissipation spin edge states related to the other valley flow only along one side of the sample. These edge states can be tuned flexibly by polarization-sensitive photoluminescence controls and/or chemical edge modifications. Such flexible manipulations of the charge, spin, and valley degrees of freedom provide a promising route towards applications in electronics, spintronics, and valleytronics.
A developing frontier in condensed matter physics is the emergence of novel electromagnetic responses, such as topological and anomalous Hall effect (AHE), in ferromagnetic Weyl semimetals (FM-WSMs). Candidates of FM-WSM are limited to materials that preserve inversion symmetry and generate Weyl crossings by breaking time-reversal symmetry. These materials share three common features: a centrosymmetric lattice, a collinear FM ordering, and a large AHE observed when the field is parallel to the magnetic easy-axis. Here, we present CeAlSi as a new type of FM-WSM, where the Weyl nodes are stabilized by breaking inversion symmetry, but their positions are tuned by breaking time-reversal symmetry. Unlike the other FM-WSMs, CeAlSi has a noncentrosymmetric lattice, a noncollinear FM ordering, and a novel AHE that is anisotropic between the easy- and hard-axes. It also exhibits large FM domains that are promising for both device applications and an interplay between the Weyl nodes and FM domain walls.
Owing to the coupling between open Fermi arcs on opposite surfaces, topological Dirac semimetals exhibit a new type of cyclotron orbit in the surface states known as Weyl orbit. Here, by lowering the carrier density in Cd3As2 nanoplates, we observe a crossover from multiple- to single-frequency Shubnikov-de Haas (SdH) oscillations when subjected to out-of-plane magnetic field, indicating the dominant role of surface transport. With the increase of magnetic field, the SdH oscillations further develop into quantum Hall state with non-vanishing longitudinal resistance. By tracking the oscillation frequency and Hall plateau, we observe a Zeeman-related splitting and extract the Landau level index as well as sub-band number. Different from conventional two-dimensional systems, this unique quantum Hall effect may be related to the quantized version of Weyl orbits. Our results call for further investigations into the exotic quantum Hall states in the low-dimensional structure of topological semimetals.
Using Hall photovoltage measurements, we demonstrate that an anomalous Hall-voltage can be induced in few layer WTe2 under circularly polarized light illumination. By applying a bias voltage along different crystal axes, we find that the photo-induce d anomalous Hall conductivity coincides with a particular crystal axis. Our results are consistent with the underlying Berry-curvature exhibiting a dipolar distribution due to the breaking of crystal inversion symmetry. Using a time-resolved optoelectronic auto-correlation spectroscopy, we find that the decay time of the anomalous Hall voltage exceeds the electron-phonon scattering time by orders of magnitude but is consistent with the comparatively long spin-lifetime of carriers in the momentum-indirect electron and hole pockets in WTe2. Our observation suggests, that a helical modulation of an otherwise isotropic spin-current is the underlying mechanism of the anomalous Hall effect.
The study of electronic properties in topological systems is one of the most fascinating topics in condensed matter physics, which has generated enormous interests in recent times. New materials are frequently being proposed and investigated to ident ify their non-trivial band structure. While sophisticated techniques such as angle-resolved photoemission spectroscopy have become popular to map the energy-momentum relation, the transport experiments lack any direct confirmation of Dirac and Weyl fermions in a system. From band structure calculations, VAl$_{3}$ has been proposed to be a type II topological Dirac semimetal. This material represents a large family of isostructural compounds, all having similar electronic band structure and is an ideal system to explore the rich physics of Lorentz symmetry violating Dirac fermions. In this work, we present a detailed analysis on the magnetotransport properties of VAl$_{3}$. A large, non-saturating magnetoresistance has been observed. Hall resistivity reveals the presence of two types of charge carriers with high mobility. Our measurements show a large planar Hall effect in this material, which is robust and can be easily detectable up to high temperature. This phenomenon originates from the relativistic chiral anomaly and non-trivial Berry curvature, which validates the theoretical prediction of the Dirac semimetal phase in VAl$_{3}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا