ﻻ يوجد ملخص باللغة العربية
In this paper, we study the problem of enabling neural machine translation (NMT) to reuse previous translations from similar examples in target prediction. Distinguishing reusable translations from noisy segments and learning to reuse them in NMT are non-trivial. To solve these challenges, we propose an Example-Guided NMT (EGNMT) framework with two models: (1) a noise-masked encoder model that masks out noisy words according to word alignments and encodes the noise-masked sentences with an additional example encoder and (2) an auxiliary decoder model that predicts reusable words via an auxiliary decoder sharing parameters with the primary decoder. We define and implement the two models with the state-of-the-art Transformer. Experiments show that the noise-masked encoder model allows NMT to learn useful information from examples with low fuzzy match scores (FMS) while the auxiliary decoder model is good for high-FMS examples. More experiments on Chinese-English, English-German and English-Spanish translation demonstrate that the combination of the two EGNMT models can achieve improvements of up to +9 BLEU points over the baseline system and +7 BLEU points over a two-encoder Transformer.
Although teacher forcing has become the main training paradigm for neural machine translation, it usually makes predictions only conditioned on past information, and hence lacks global planning for the future. To address this problem, we introduce an
Large-scale training datasets lie at the core of the recent success of neural machine translation (NMT) models. However, the complex patterns and potential noises in the large-scale data make training NMT models difficult. In this work, we explore to
Neural machine translation (NMT) models generally adopt an encoder-decoder architecture for modeling the entire translation process. The encoder summarizes the representation of input sentence from scratch, which is potentially a problem if the sente
Prior work has proved that Translation memory (TM) can boost the performance of Neural Machine Translation (NMT). In contrast to existing work that uses bilingual corpus as TM and employs source-side similarity search for memory retrieval, we propose
In this paper, we propose Neural Phrase-to-Phrase Machine Translation (NP$^2$MT). Our model uses a phrase attention mechanism to discover relevant input (source) segments that are used by a decoder to generate output (target) phrases. We also design