ترغب بنشر مسار تعليمي؟ اضغط هنا

Neural Phrase-to-Phrase Machine Translation

279   0   0.0 ( 0 )
 نشر من قبل Chong Wang
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we propose Neural Phrase-to-Phrase Machine Translation (NP$^2$MT). Our model uses a phrase attention mechanism to discover relevant input (source) segments that are used by a decoder to generate output (target) phrases. We also design an efficient dynamic programming algorithm to decode segments that allows the model to be trained faster than the existing neural phrase-based machine translation method by Huang et al. (2018). Furthermore, our method can naturally integrate with external phrase dictionaries during decoding. Empirical experiments show that our method achieves comparable performance with the state-of-the art methods on benchmark datasets. However, when the training and testing data are from different distributions or domains, our method performs better.



قيم البحث

اقرأ أيضاً

In this paper, we present Neural Phrase-based Machine Translation (NPMT). Our method explicitly models the phrase structures in output sequences using Sleep-WAke Networks (SWAN), a recently proposed segmentation-based sequence modeling method. To mit igate the monotonic alignment requirement of SWAN, we introduce a new layer to perform (soft) local reordering of input sequences. Different from existing neural machine translation (NMT) approaches, NPMT does not use attention-based decoding mechanisms. Instead, it directly outputs phrases in a sequential order and can decode in linear time. Our experiments show that NPMT achieves superior performances on IWSLT 2014 German-English/English-German and IWSLT 2015 English-Vietnamese machine translation tasks compared with strong NMT baselines. We also observe that our method produces meaningful phrases in output languages.
In this paper, we propose phraseNet, a neural machine translator with a phrase memory which stores phrase pairs in symbolic form, mined from corpus or specified by human experts. For any given source sentence, phraseNet scans the phrase memory to det ermine the candidate phrase pairs and integrates tagging information in the representation of source sentence accordingly. The decoder utilizes a mixture of word-generating component and phrase-generating component, with a specifically designed strategy to generate a sequence of multiple words all at once. The phraseNet not only approaches one step towards incorporating external knowledge into neural machine translation, but also makes an effort to extend the word-by-word generation mechanism of recurrent neural network. Our empirical study on Chinese-to-English translation shows that, with carefully-chosen phrase table in memory, phraseNet yields 3.45 BLEU improvement over the generic neural machine translator.
103 - Junjie Hu , Graham Neubig 2021
Neural machine translation (NMT) is sensitive to domain shift. In this paper, we address this problem in an active learning setting where we can spend a given budget on translating in-domain data, and gradually fine-tune a pre-trained out-of-domain N MT model on the newly translated data. Existing active learning methods for NMT usually select sentences based on uncertainty scores, but these methods require costly translation of full sentences even when only one or two key phrases within the sentence are informative. To address this limitation, we re-examine previous work from the phrase-based machine translation (PBMT) era that selected not full sentences, but rather individual phrases. However, while incorporating these phrases into PBMT systems was relatively simple, it is less trivial for NMT systems, which need to be trained on full sequences to capture larger structural properties of sentences unique to the new domain. To overcome these hurdles, we propose to select both full sentences and individual phrases from unlabelled data in the new domain for routing to human translators. In a German-English translation task, our active learning approach achieves consistent improvements over uncertainty-based sentence selection methods, improving up to 1.2 BLEU score over strong active learning baselines.
Building effective neural machine translation (NMT) models for very low-resourced and morphologically rich African indigenous languages is an open challenge. Besides the issue of finding available resources for them, a lot of work is put into preproc essing and tokenization. Recent studies have shown that standard tokenization methods do not always adequately deal with the grammatical, diacritical, and tonal properties of some African languages. That, coupled with the extremely low availability of training samples, hinders the production of reliable NMT models. In this paper, using Fon language as a case study, we revisit standard tokenization methods and introduce Word-Expressions-Based (WEB) tokenization, a human-involved super-words tokenization strategy to create a better representative vocabulary for training. Furthermore, we compare our tokenization strategy to others on the Fon-French and French-Fon translation tasks.
Translation models based on hierarchical phrase-based statistical machine translation (HSMT) have shown better performances than the non-hierarchical phrase-based counterparts for some language pairs. The standard approach to HSMT learns and apply a synchronous context-free grammar with a single non-terminal. The hypothesis behind the grammar refinement algorithm presented in this work is that this single non-terminal is overloaded, and insufficiently discriminative, and therefore, an adequate split of it into more specialised symbols could lead to improved models. This paper presents a method to learn synchronous context-free grammars with a huge number of initial non-terminals, which are then grouped via a clustering algorithm. Our experiments show that the resulting smaller set of non-terminals correctly capture the contextual information that makes it possible to statistically significantly improve the BLEU score of the standard HSMT approach.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا