ﻻ يوجد ملخص باللغة العربية
A physical system exposes to us in a real space, while its description often refers to its reciprocal momentum space. A connection between them can be established by exploring patterns of quasiparticles interference (QPI), which is experimentally accessible by Fourier transformation of the scanning tunneling spectroscopy (FT-STS). We here investigate how local and global features of QPI patterns are related to the geometry and topology of electronic structure in the considered physical system. A reduced response function (RRF) approach is developed that can analyze QPI patterns with clear physical pictures. It is justified that the generalized joint density of states, which is the imaginary part of RRF, for studying QPI. Moreover, we reveal that global patterns of QPI may be indicators of topological numbers for gapless systems, and demonstrate that robustness of such indicators against distractive local features of QPI for topological materials with complicated band structures.
We calculate the form of quasiparticle interference patterns in bilayer graphene within a low-energy description, taking into account perturbatively the trigonal warping terms. We introduce four different types of impurities localized on the A and B
In the presence of spin-orbit coupling, electron scattering off impurities depends on both spin and orbital angular momentum of electrons -- spin-orbit scattering. Although some transport properties are subject to spin-orbit scattering, experimental
Exotic electronic states are realized in novel quantum materials. This field is revolutionized by the topological classification of materials. Such compounds necessarily host unique states on their boundaries. Scanning tunneling microscopy studies of
A Mn4 single-molecule magnet displays asymmetric Berry-phase interference patterns in the transverse-field (HT) dependence of the magnetization tunneling probability when a longitudinal field (HL) is present, contrary to symmetric patterns observed f
Exploiting inversion symmetry breaking (ISB) in systems with strong spin-orbit coupling promises control of spin through electric fields - crucial to achieve miniaturization in spintronic devices. Delivering on this promise requires a two-dimensional