ﻻ يوجد ملخص باللغة العربية
We discuss a mechanism of microwave absorption in conventional superconductors which is similar to the Debye absorption mechanism in molecular gases. The contribution of this mechanism to the emph{ac} conductivity is proportional to the inelastic quasiparticle relaxation time $tau_mathrm{mathrm{in}}$ rather than the elastic one $tau_{mathrm{el}}$ and therefore it can be much larger than the conventional one. The Debye contribution to the linear conductivity arises only in the presence of a emph{dc} supercurrent in the system and its magnitude depends strongly on the orientation of the microwave field relative to the supercurrent. The Debye contribution to the nonlinear conductivity exists even in the absence of emph{dc} supercurrent. Since it is proportional to $tau_{mathrm{in}}$ the nonlinear threshold is anomalously low. Microwave absorption measurements may provide direct information about $tau_mathrm{in}$ in superconductors.
Enhanced microwave absorption, larger than that in the normal state, is observed in fine grains of type-II superconductors (MgB$_2$ and K$_3$C$_{60}$) for magnetic fields as small as a few $%$ of the upper critical field. The effect is predicted by t
We discuss a new mechanism of microwave absorption in s- and d-wave superconductors, which arises in the presence of a dc supercurrent in the system. It produces a contribution to the ac conductivity that is proportional to the inelastic quasiparticl
We describe a mechanism by which the longitudinal thermal conductivity $kappa_{xx}$, measured in an in-plane magnetic field, oscillates as a function of field angle in layered nodal superconductors. These oscillations occur when the spin-orbit splitt
Ultra low-loss microwave materials are crucial for enhancing quantum coherence and scalability of superconducting qubits. Van der Waals (vdW) heterostructure is an attractive platform for quantum devices due to the single-crystal structure of the con
We investigate pairing mechanism in multiband superconductors. To put our feet on firm ground, unbiased renormalization group analysis is carried out for iron-based superconductors. It is quite remarkable that, after integrating out quantum fluctuati