ﻻ يوجد ملخص باللغة العربية
Cluster and hypernuclei production in heavy-ion collisions is presently under active experimental and theoretical investigation. Since clusters are weekly bound objects, their production is very sensitive to the dynamical evolution of the system and its interactions. The theoretical description of cluster formation is related to the n-body problem. Here we present the novel n-body dynamical transport approach PHQMD (Parton-Hadron-Quantum-Molecular Dynamics) which is designed to provide a microscopic description of nuclear cluster and hypernucleus formation as well as of general particle production in heavy-ion reactions at relativistic energies. In difference to the coalescence or statistical models, often used for the cluster formation, in PHQMD clusters are formed dynamically due to the interactions between baryons described on a basis of Quantum Molecular Dynamics (QMD)which allows to propagate the n-body Wigner density and n-body correlations in phase-space, essential for the cluster formation. The clusters are identified by the MST (Minimum Spanning Tree) or the SACA (Simulated Annealing Cluster Algorithm) algorithm which finds the most bound configuration of nucleons and clusters. Collisions among hadrons as well as Quark-Gluon-Plasma formation and parton dynamics in PHQMD are treated in the same way as in the established PHSD (Parton-Hadron-String Dynamics)transport approach. In order to verify our approach with respect to the general dynamics we present here the first PHQMD results for general bulk observables such as rapidity distributions and transverse mass spectra for hadrons ($pi, K, bar K, p, bar p, Lambda, bar Lambda$) from SIS to RHIC energies. We find a good description of the bulk dynamics which allows us to proceed with the results on cluster production, including hypernuclei.
We present the novel microscopic n-body dynamical transport approach PHQMD(Parton-Hadron-Quantum-Molecular-Dynamics) for the description of particle production and cluster formation in heavy-ion reactions at relativistic energies. The PHQMD extends t
We study cluster and hypernuclei production in heavy-ion collisions at relativistic energies employing the Parton-Hadron-Quantum-Molecular-Dynamics (PHQMD) approach, a microscopic n-body transport model based on the QMD propagation of the baryonic de
The dynamics of partons and hadrons in relativistic nucleus-nucleus collisions is analyzed within the novel Parton-Hadron-String Dynamics (PHSD) transport approach, which is based on a dynamical quasiparticle model for the partonic phase (DQPM) inclu
Modeling of the process of the formation of nuclear clusters in the hot nuclear matter is a challenging task. We present the novel n-body dynamical transport approach - PHQMD (Parton-Hadron-Quantum-Molecular Dynamics) [1] for the description of heavy
The dynamics of exotic hypernuclei in heavy-ion collisions has been investigated thoroughly with a microscopic transport model. All possible channels on hyperon ($Lambda$, $Sigma$ and $Xi$) production near threshold energies are implemented in the tr