ﻻ يوجد ملخص باللغة العربية
Modeling of the process of the formation of nuclear clusters in the hot nuclear matter is a challenging task. We present the novel n-body dynamical transport approach - PHQMD (Parton-Hadron-Quantum-Molecular Dynamics) [1] for the description of heavy-ion collisions as well as clusters and hpernuclei formation. The PHQMD extends well established PHSD (Parton-Hadron-String Dynamics) approach - which incorporates explicit partonic degrees-of-freedom (quarks and gluons), an equation-of-state from lattice QCD, as well as dynamical hadronization and hadronic elastic and inelastic collisions in the final reaction phase, by n-body quantum molecular dynamic propagation of hadrons which allows choosing of the equation of state with different compression modulus. The formation of clusters, including hypernuclei, is realized by incorporation the Simulated Annealing Clusterization Algorithm (SACA). We present first results from PHQMD on the study of the production rates of strange hadrons, nuclear clusters and hypernuclei in e1elementary and heavy-ion collisions at NICA energies. In particular, sensitivity on the hard and soft equation of state within the PHQMD model was investigated for bulk observables.
In relativistic ion collisions there are excellent opportunities to produce and investigate hyper-nuclei. We have systematically studied the formation of hypernuclear spectator residues in peripheral heavy-ion collisions with the transport DCM and Ur
Cluster and hypernuclei production in heavy-ion collisions is presently under active experimental and theoretical investigation. Since clusters are weekly bound objects, their production is very sensitive to the dynamical evolution of the system and
We study cluster and hypernuclei production in heavy-ion collisions at relativistic energies employing the Parton-Hadron-Quantum-Molecular-Dynamics (PHQMD) approach, a microscopic n-body transport model based on the QMD propagation of the baryonic de
The dynamics of exotic hypernuclei in heavy-ion collisions has been investigated thoroughly with a microscopic transport model. All possible channels on hyperon ($Lambda$, $Sigma$ and $Xi$) production near threshold energies are implemented in the tr
Recent experiments at RHIC and LHC have demonstrated that there are excellent opportunities to produce light baryonic clusters of exotic matter (strange and anti-matter) in ultra-relativistic ion collisions. Within the hybrid-transport model UrQMD we