ترغب بنشر مسار تعليمي؟ اضغط هنا

The PHQMD model for the formation of nuclear clusters and hypernuclei in heavy-ion collisions

102   0   0.0 ( 0 )
 نشر من قبل Viktar Kireyeu
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Modeling of the process of the formation of nuclear clusters in the hot nuclear matter is a challenging task. We present the novel n-body dynamical transport approach - PHQMD (Parton-Hadron-Quantum-Molecular Dynamics) [1] for the description of heavy-ion collisions as well as clusters and hpernuclei formation. The PHQMD extends well established PHSD (Parton-Hadron-String Dynamics) approach - which incorporates explicit partonic degrees-of-freedom (quarks and gluons), an equation-of-state from lattice QCD, as well as dynamical hadronization and hadronic elastic and inelastic collisions in the final reaction phase, by n-body quantum molecular dynamic propagation of hadrons which allows choosing of the equation of state with different compression modulus. The formation of clusters, including hypernuclei, is realized by incorporation the Simulated Annealing Clusterization Algorithm (SACA). We present first results from PHQMD on the study of the production rates of strange hadrons, nuclear clusters and hypernuclei in e1elementary and heavy-ion collisions at NICA energies. In particular, sensitivity on the hard and soft equation of state within the PHQMD model was investigated for bulk observables.



قيم البحث

اقرأ أيضاً

In relativistic ion collisions there are excellent opportunities to produce and investigate hyper-nuclei. We have systematically studied the formation of hypernuclear spectator residues in peripheral heavy-ion collisions with the transport DCM and Ur QMD models. The hyperon capture was calculated within the potential and coalescence approaches. We demonstrate that even at the beam energies around and lower than the threshold for producing Lambda hyperons in binary nucleon-nucleon interactions a considerable amount of hypernuclei, including multi-strange ones, can be produced. This is important for preparation of new experiments on hypernuclei in the wide energy range. The uncertainties of the predictions are investigated within the models, and the comparison with the strangeness production measured in experiments is also performed.
Cluster and hypernuclei production in heavy-ion collisions is presently under active experimental and theoretical investigation. Since clusters are weekly bound objects, their production is very sensitive to the dynamical evolution of the system and its interactions. The theoretical description of cluster formation is related to the n-body problem. Here we present the novel n-body dynamical transport approach PHQMD (Parton-Hadron-Quantum-Molecular Dynamics) which is designed to provide a microscopic description of nuclear cluster and hypernucleus formation as well as of general particle production in heavy-ion reactions at relativistic energies. In difference to the coalescence or statistical models, often used for the cluster formation, in PHQMD clusters are formed dynamically due to the interactions between baryons described on a basis of Quantum Molecular Dynamics (QMD)which allows to propagate the n-body Wigner density and n-body correlations in phase-space, essential for the cluster formation. The clusters are identified by the MST (Minimum Spanning Tree) or the SACA (Simulated Annealing Cluster Algorithm) algorithm which finds the most bound configuration of nucleons and clusters. Collisions among hadrons as well as Quark-Gluon-Plasma formation and parton dynamics in PHQMD are treated in the same way as in the established PHSD (Parton-Hadron-String Dynamics)transport approach. In order to verify our approach with respect to the general dynamics we present here the first PHQMD results for general bulk observables such as rapidity distributions and transverse mass spectra for hadrons ($pi, K, bar K, p, bar p, Lambda, bar Lambda$) from SIS to RHIC energies. We find a good description of the bulk dynamics which allows us to proceed with the results on cluster production, including hypernuclei.
We study cluster and hypernuclei production in heavy-ion collisions at relativistic energies employing the Parton-Hadron-Quantum-Molecular-Dynamics (PHQMD) approach, a microscopic n-body transport model based on the QMD propagation of the baryonic de grees of freedom with density dependent 2-body potential interactions. All other ingredients of PHQMD, including the collision integral and the treatment of the quark-gluon plasma (QGP) phase, are adopted from the Parton-Hadron-String Dynamics (PHSD) approach. In PHQMD the cluster formation occurs dynamically, caused by the interactions. The clusters are recognized by the Minimum Spanning Tree (MST) algorithm. We present the PHQMD results for cluster and hypernuclei formation in comparison with the available experimental data at AGS, SPS, RHIC-BES and RHIC fixed target energies. We also provide predictions on cluster production for the upcoming FAIR and NICA experiments. PHQMD allows to study the time evolution of formed clusters and the origin of their production, which helps to understand how such weakly bound objects are formed and survive in the rather dense and hot environment created in heavy-ion collisions. It offers therefore an explanation of the ice in the fire puzzle.
81 - Zhao-Qing Feng 2020
The dynamics of exotic hypernuclei in heavy-ion collisions has been investigated thoroughly with a microscopic transport model. All possible channels on hyperon ($Lambda$, $Sigma$ and $Xi$) production near threshold energies are implemented in the tr ansport model. The light complex fragments (Z$leq$2) are constructed with the Wigner-function method. The classical phase-space coalescence is used for recognizing heavy nuclear and hyperfragments and the statistical model is taken for describing the decay process. The nuclear fragmentation reactions of the available experimental data from the ALADIN collaboration are well reproduced by the combined approach. It is found that the in-medium potentials of strange particles influence the strangeness production and fragment formation. The hyperfragments are mainly created in the projectile or target-like rapidity region and the yields are reduced about the 3-order magnitude in comparison to the nuclear fragments. The hypernuclear dynamics of HypHI data is well described with the model. The possible experiments for producing the neutron-rich hyperfragments at the high-intensity heavy-ion accelerator facility (HIAF) are discussed.
Recent experiments at RHIC and LHC have demonstrated that there are excellent opportunities to produce light baryonic clusters of exotic matter (strange and anti-matter) in ultra-relativistic ion collisions. Within the hybrid-transport model UrQMD we show that the coalescence mechanism can naturally explain the production of these clusters in the ALICE experiment at LHC. As a consequence of this mechanism we predict the rapidity domains where the yields of such clusters are much larger than the observed one at midrapidity. This new phenomenon can lead to unique methods for producing exotic nuclei.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا