ﻻ يوجد ملخص باللغة العربية
We examined the structure near the solar limb in TRACE images of the continuum and in the 1600 and 171 A bands as well as in SDO images in the continuum (from HMI) and all AIA bands. The images in different wavelength bands were carefully coaligned by using the position of Mercury for TRACE and Venus for SDO during their transit in front of the solar disk in 1999 and 2012 respectively. Chromospheric absorbing structures in the TRACE 171 A band are best visible 7 above the white light limb, very close to the inner limb, defined as the inflection point of the rising part of the center-to-limb intensity variation. They are correlated with, but are not identical to spicules in emission, seen in the 1600 A band. Similar results were obtained from AIA and SOT images. Tall spicules in 304 A are not associated with any absorption in the higher temperature bands. Performing azimuthal averaging of the intensity over 15 degree sectors near the N, S, E and W limbs, we measured the height of the limb and of the peak intensity in all AIA bands. We found that the inner limb height in the transition region AIA bands increases with wavelength, consistent with a bound-free origin of the absorption from neutral H and He. From that we computed the column density and the density of neutral hydrogen as a function of height. We estimated a height of (2300 $pm$ 500)km for the base of the transition region. Finally, we measured the scale height of the AIA emission of the corona and associated it with the temperature; we deduced a value of (1.24 $pm$ 0.25) 10$^6$ K for the polar corona.
We present evidence that transition region red-shifts are naturally produced in episodically heated models where the average volumetric heating scale height lies between that of the chromospheric pressure scale height of 200 km and the coronal scale
The relationships among coronal loop structures at different temperatures is not settled. Previous studies have suggested that coronal loops in the core of an active region are not seen cooling through lower temperatures and therefore are steadily he
The heating of the outer solar atmospheric layers, i.e., the transition region and corona, to high temperatures is a long standing problem in solar (and stellar) physics. Solutions have been hampered by an incomplete understanding of the magnetically
The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a suborbital rocket experiment that on 3rd September 2015 measured the linear polarization produced by scattering processes in the hydrogen Ly-$alpha$ line of the solar disk radiation, whos
We derive the non-thermal velocities (NTVs) in the transition region of an active region using the ion{Si}{4}~1393.78~{AA} line observed by the Interface Region Imaging Spectrograph (IRIS) and compare them with the line-of-sight photospheric magnetic