ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-thermal Velocity in the Transition Region of Active Regions and its Centre-to-Limb Variation

110   0   0.0 ( 0 )
 نشر من قبل Durgesh Tripathi Professor
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive the non-thermal velocities (NTVs) in the transition region of an active region using the ion{Si}{4}~1393.78~{AA} line observed by the Interface Region Imaging Spectrograph (IRIS) and compare them with the line-of-sight photospheric magnetic fields obtained by the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). The active region consists of two strong field regions with opposite polarity, separated by a weak field corridor, that widened as the active region evolved. The means of the NTV distributions in strong-field regions (weak field corridors) range between $sim$18{--}20 (16{--}18)~km~s$^{-1}$, albeit the NTV maps show much larger range. In addition, we identify a narrow lane in the middle of the corridor with significantly reduced NTV. The NTVs do not show a strong center-to-limb variation, albeit somewhat larger values near the disk center. The NTVs are well correlated with redshifts as well as line intensities. The results obtained here and those presented in our companion paper on Doppler shifts suggest two populations of plasma in the active region emitting in ion{Si}{4}. The first population exists in the strong field regions and extends partway into the weak field corridor between them. We attribute this plasma to spicules heated to $sim$0.1 MK (often called type II spicules). They have a range of inclinations relative to vertical. The second population exists in the center of the corridor, is relatively faint, and has smaller velocities, likely horizontal. These results provide further insights into the heating of the transition region.



قيم البحث

اقرأ أيضاً

A comprehensive understanding of the structure of Doppler motions in transition region including the center-to-limb variation and its relationship with the magnetic field structure is vital for the understanding of mass and energy transfer in the sol ar atmosphere. In this paper, we have performed such a study in an active region using the Si IV 1394~{AA} emission line recorded by the Interface Region Imaging Spectrograph (IRIS) and the line-of-sight photospheric magnetic field obtained by the Helioseismic and Magnetic Imager (HMI) on-board the Solar Dynamics Observatory (SDO). The active region has two opposite polarity strong field regions separated by a weak field corridor, which widened as the active region evolved. On average the strong field regions (corridor) show(s) redshifts of 5{--}10 (3{--}9)~km~s$^{-1}$ (depending on the date of observation). There is, however, a narrow lane in the middle of the corridor with near-zero Doppler shifts at all disk positions, suggesting that any flows there are very slow. The Doppler velocity distributions in the corridor seem to have two components---a low velocity component centered near 0 km/s and a high velocity component centered near 10~km~s$^{-1}$. The high velocity component is similar to the velocity distributions in the strong field regions, which have just one component. Both exhibit a small center-to limb variation and seem to come from the same population of flows. To explain these results, we suggest that the emission from the lower transition region comes primarily from warm type II spicules, and we introduce the idea of a `chromospheric wall---associated with classical cold spicules---to account for a diminished center-to-limb variation.
We present the properties of the inverse Evershed flow (IEF) based on the center-to-limb variation of the plasma speed and loop geometry of chromospheric superpenumbral fibrils in eleven sunspots that were located at a wide range of heliocentric angl es from 12 to 79 deg. The observations were acquired at the Dunn Solar Telescope in the spectral lines of Halpha at 656nm, CaII IR at 854 nm and HeI at 1083 nm. All sunspots display opposite line-of-sight (LOS) velocities on the limb and center side with a distinct shock signature near the outer penumbral edge. We developed a simplified flexible sunspot model assuming axisymmetry and prescribing the radial flow speed profile at a known loop geometry to replicate the observed two-dimensional IEF patterns under different viewing angles. The simulated flow maps match the observations for chromospheric loops with 10-20 Mm length starting at 0.8-1.1 sunspot radii, an apex height of 2-3Mm and a true constant flow speed of 2-9km/s. We find on average a good agreement of the simulated velocities and the observations on elliptical annuli around the sunspot. Individual IEF channels show a significant range of variation in their properties and reach maximal LOS speeds of up to 12km/s. Upwards or downwards directed flows do not show a change of sign in the LOS velocities for heliocentric angles above 30 deg. Our results are consistent with the IEF being caused by a siphon flow mechanism driving a flow at a constant sonic speed along elevated loops with a flattened top in the chromosphere.
The relationships among coronal loop structures at different temperatures is not settled. Previous studies have suggested that coronal loops in the core of an active region are not seen cooling through lower temperatures and therefore are steadily he ated. If loops were cooling, the transition region would be an ideal temperature regime to look for a signature of their evolution. The Extreme-ultraviolet Imaging Spectrometer (EIS) on Hinode provides monochromatic images of the solar transition region and corona at an unprecedented cadence and spatial resolution, making it an ideal instrument to shed light on this issue. Analysis of observations of active region 10978 taken in 2007 December 8 -- 19 indicates that there are two dominant loop populations in the active region: core multi-temperature loops that undergo a continuous process of heating and cooling in the full observed temperature range 0.4-2.5 MK and even higher as shown by the X-Ray Telescope (XRT); and peripheral loops which evolve mostly in the temperature range 0.4-1.3 MK. Loops at transition region temperatures can reach heights of 150 Mm in the corona above the limb and develop downflows with velocities in the range of 39-105 km/s.
In this work we investigate the thermal structure of an off-limb active region in various non-flaring areas, as it provides key information on the way these structures are heated. In particular, we concentrate in the very hot component (>3 MK) as it is a crucial element to discriminate between different heating mechanisms. We present an analysis using Fe and Ca emission lines from both SOHO/SUMER and HINODE/EIS. A dataset covering all ionization stages from Fe X to Fe XIX has been used for the thermal analysis (both DEM and EM). Ca XIV is used for the SUMER-EIS radiometric cross-calibration. We show how the very hot plasma is present and persistent almost everywhere in the core of the limb AR. The off-limb AR is clearly structured in Fe XVIII. Almost everywhere, the EM analysis reveals plasma at 10 MK (visible in Fe XIX emission) which is down to 0.1% of EM of the main 3 MK plasma. We estimate the power law index of the hot tail of the EM to be between -8.5 and -4.4. However, we leave an open question on the possible existence of a small minor peak at around 10 MK. The absence in some part of the AR of Fe XIX and Fe XXIII lines (which fall into our spectral range) enables us to determine an upper limit on the EM at such temperatures. Our results include a new Ca XIV 943.59 AA~ atomic model.
112 - F. Giannattasio 2012
The velocity field in the lower solar atmosphere undergoes strong interactions with magnetic fields. Many authors have pointed out that power is reduced by a factor between two and three within magnetic regions, depending on frequency, depth, the rad ius and the magnetic strength of the flux tube. Many mechanisms have been proposed to explain the observations. In this work, SDO dopplergrams and magnetograms of 12 bipolar active regions ($beta$ARs) at a 45 second cadence, are used to investigate the relation between velocity fluctuations and magnetic fields. We show that there is an asymmetry within $beta$ARs, with the velocity oscillation amplitude being more suppressed in the leading polarities compared to the trailing polarities. Also, the strongest magnetic fields do not completely suppress the five-minute oscillation amplitude, neither in the spot innermost umbrae.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا