ﻻ يوجد ملخص باللغة العربية
The $1994$ first discovery of a metal-insulator transition in two dimensions and series of $1997-1998$ experiments on two dimensional metal-insulator transitions in various samples of MOSFETs changed the paradigm of Anderson localization that metals cannot exist in two dimensions. Unfortunately, this delocalization physics of the diffusive regime does not apply to the effective hydrodynamic regime of quantum criticality. In the present study, we investigate effects of mutual correlations between hydrodynamic fluctuations and weak-localization corrections on Anderson localization, based on the renormalization group analysis up to the two-loop order. As a result, we find that the absence of quantum coherence in two-particle composite excitations gives rise to a novel disordered non-Fermi liquid metallic state near two dimensional nematic quantum criticality with nonmagnetic disorders. This research would be the first step in understanding the $T-$linear electrical resistivity as a characteristic feature of non-Fermi liquids and the origin of unconventional superconductivity from effective hydrodynamics of quantum criticality.
We analyze emergent quantum multi-criticality for strongly interacting, massless Dirac fermions in two spatial dimensions ($d=2$) within the framework of Gross-Neveu-Yukawa models, by considering the competing order parameters that give rise to fully
We show that the RKKY interaction in the two-impurity Anderson model comprise two contributions: a ferromagnetic part stemming from the symmetrized hybridization functions and an anti-ferromagnetic part. We demonstrate that this anti-ferromagnetic co
Quasi-two dimensional itinerant fermions in the Anti-Ferro-Magnetic (AFM) quantum-critical region of their phase diagram, such as in the Fe-based superconductors or in some of the heavy-fermion compounds, exhibit a resistivity varying linearly with t
Theoretically, it is commonly held that in metals near a nematic quantum critical point the electronic excitations become incoherent on the entire `hot Fermi surface, triggering non Fermi liquid behavior. However, such conclusions are based on electr
Earlier Monte-Carlo calculations on the dissipative two-dimensional XY model are extended in several directions. We study the phase diagram and the correlation functions when dissipation is very small, where it has properties of the classical 3D-XY t