ترغب بنشر مسار تعليمي؟ اضغط هنا

Lattice effects on nematic quantum criticality in metals

115   0   0.0 ( 0 )
 نشر من قبل Indranil Paul
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Theoretically, it is commonly held that in metals near a nematic quantum critical point the electronic excitations become incoherent on the entire `hot Fermi surface, triggering non Fermi liquid behavior. However, such conclusions are based on electron-only theories, ignoring a symmetry-allowed coupling between the electronic nematic variable and a suitable crystalline lattice strain. Here we show that including this coupling leads to entirely different conclusions because the critical fluctuations are mostly cutoff by the non-critical lattice shear modes. At sufficiently low temperatures the thermodynamics remain Fermi liquid type, while, depending on the Fermi surface geometry, either the entire Fermi surface stays cold, or at most there are hot spots. In particular, our predictions are relevant for the iron-based superconductors.



قيم البحث

اقرأ أيضاً

Electronic nematicity in correlated metals often occurs alongside another instability such as magnetism. As a result, the question remains whether nematicity alone can drive unconventional superconductivity or anomalous (quantum critical) transport i n such systems. In FeSe, nematicity emerges in isolation, providing a unique opportunity to address this question. Studies to date, however, have proved inconclusive; while signatures of nematic criticality are observed upon sulfur substitution, they appear to be quenched under the application of pressure due to the emergent magnetism. Here, we study the temperature and pressure dependence of the low-temperature resistivity of FeSe$_{1-x}$S$_{x}$ crystals at $x$ values just beyond the nematic quantum critical point. Two distinct components to the resistivity are revealed; one whose magnitude falls with increasing pressure and one which grows upon approaching the magnetic state at higher pressures. These findings indicate that nematic and magnetic critical fluctuations in FeSe$_{1-x}$S$_{x}$ are completely decoupled, in marked contrast to other Fe-based superconductors, and that nematic fluctuations alone may be responsible for the transport signatures of quantum criticality found in FeSe$_{1-x}$S$_{x}$ at ambient pressure.
293 - Yu Li , 1 Zahra Yamani , 2 Yu Song 2018
We use inelastic neutron scattering to study acoustic phonons and spin excitations in single crystals of NaFeAs, a parent compound of iron pnictide superconductors. NaFeAs exhibits a tetragonal-to-orthorhombic structural transition at $T_sapprox 58$ K and a collinear antiferromagnetic (AF) order at $T_Napprox 45$ K. While longitudinal and out-of-plane transverse acoustic phonons behave as expected, the in-plane transverse acoustic phonons reveal considerable softening on cooling to $T_s$, and then harden on approaching $T_N$ before saturating below $T_N$. In addition, we find that spin-spin correlation lengths of low-energy magnetic excitations within the FeAs layer and along the $c$-axis increase dramatically below $T_s$, and show weak anomaly across $T_N$. These results suggest that the electronic nematic phase present in the paramagnetic tetragonal phase is closely associated with dynamic spin-lattice coupling, possibly arising from the one-phonon-two-magnon mechanism.
The exotic normal state of iron chalcogenide superconductor FeSe, which exhibits vanishing magnetic order and possesses an electronic nematic order, triggered extensive explorations of its magnetic ground state. To understand its novel properties, we study the ground state of a highly frustrated spin-$1$ system with bilinear-biquadratic interactions using unbiased large-scale density matrix renormalization group. Remarkably, with increasing biquadratic interactions, we find a paramagnetic phase between Neel and stripe magnetic ordered phases. We identify this phase as a candidate of nematic quantum spin liquid by the compelling evidences, including vanished spin and quadrupolar orders, absence of lattice translational symmetry breaking, and a persistent non-zero lattice nematic order in the thermodynamic limit. The established quantum phase diagram natually explains the observations of enhanced spin fluctuations of FeSe in neutron scattering measurement and the phase transition with increasing pressure. This identified paramagnetic phase provides a new possibility to understand the novel properties of FeSe.
Motivated by recent experimental realizations of polar metals with broken inversion symmetry, we explore the emergence of strong correlations driven by criticality when the polar transition temperature is tuned to zero. Overcoming previously discusse d challenges, we demonstrate a robust mechanism for coupling between the critical mode and electrons in multiband metals. We identify and characterize several novel interacting phases, including non-Fermi liquids, when band crossings are close to the Fermi level and present their experimental signatures for three generic types of band crossings.
136 - Dai Aoki , Jacques Flouquet 2014
We review our recent studies on ferromagnetic superconductors, UGe2, URhGe and UCoGe, together with the ferromagnetic quantum criticality and paramagnetic singularity on the Ising 5f-itinerant system UCoAl. Thanks to the variety of ordered moment in ferromagnetic superconductors from 1.5 muB to 0.05 muB, interesting systematic changes or similarities are clarified. All ferromagnetic superconductors show large upper critical field Hc2, and the field-reentrant (-reinforced) phenomena are observed in the field-temperature phase diagram, when the pressure or field direction is tuned for particular conditions. These phenomena are well explained by the ferromagnetic longitudinal fluctuations, which are induced by the magnetic field in transverse configurations. The large Hc2 might be also associated with possible additional effects of Fermi surface instabilities, such as Lifshitz-type singularities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا