ترغب بنشر مسار تعليمي؟ اضغط هنا

Compact Sets of Baire Class One Functions and Maximal Almost Disjoint Families

161   0   0.0 ( 0 )
 نشر من قبل Haim Horowitz
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide a proof that analytic almost disjoint families of infinite sets of integers cannot be maximal using a result of Bourgain about compact sets of Baire class one functions. Inspired by this and related ideas, we then provide a new proof of that there are no maximal almost disjoint families in Solovays model. We then use the ideas behind this proof to provide an extension of a dichotomy result by Rosenthal and by Bourgain, Fremlin and Talagrand to general pointwise bounded functions in Solovays model. We then show that the same conclusions can be drawn about the model obtained when we add a generic selective ultrafilter to the Solovay model.



قيم البحث

اقرأ أيضاً

Let $K$ be a compact metric space. A real-valued function on $K$ is said to be of Baire class one (Baire-1) if it is the pointwise limit of a sequence of continuous functions. In this paper, we study two well known ordinal indices of Baire-1 function s, the oscillation index $beta$ and the convergence index $gamma$. It is shown that these two indices are fully compatible in the following sense : a Baire-1 function $f$ satisfies $beta(f) leq omega^{xi_1} cdot omega^{xi_2}$ for some countable ordinals $xi_1$ and $xi_2$ if and only if there exists a sequence of Baire-1 functions $(f_n)$ converging to $f$ pointwise such that $sup_nbeta(f_n) leq omega^{xi_1}$ and $gamma((f_n)) leq omega^{xi_2}$. We also obtain an extension result for Baire-1 functions analogous to the Tietze Extension Theorem. Finally, it is shown that if $beta(f) leq omega^{xi_1}$ and $beta(g) leq omega^{xi_2},$ then $beta(fg) leq omega^{xi},$ where $xi=max{xi_1+xi_2, xi_2+xi_1}}.$ These results do not assume the boundedness of the functions involved.
116 - Peter Cholak , Peter Gerdes , 2014
Soare proved that the maximal sets form an orbit in $mathcal{E}$. We consider here $mathcal{D}$-maximal sets, generalizations of maximal sets introduced by Herrmann and Kummer. Some orbits of $mathcal{D}$-maximal sets are well understood, e.g., hemim aximal sets, but many are not. The goal of this paper is to define new invariants on computably enumerable sets and to use them to give a complete nontrivial classification of the $mathcal{D}$-maximal sets. Although these invariants help us to better understand the $mathcal{D}$-maximal sets, we use them to show that several classes of $mathcal{D}$-maximal sets break into infinitely many orbits.
The theory of ordinal ranks on Baire class 1 functions developed by Kechris and Loveau was recently extended by Elekes, Kiss and Vidny{a}nszky to Baire class $xi$ functions for any countable ordinal $xigeq1$. In this paper, we answer two of the quest ions raised by them in their paper (Ranks on the Baire class $xi$ functions, Trans. Amer. Math. Soc. 368(2016), 8111-8143). Specifically, we show that for any countable ordinal $xigeq1,$ the ranks $beta_{xi}^{ast}$ and $gamma_{xi}^{ast}$ are essentially equivalent, and that neither of them is essentially multiplicative. Since the rank $beta$ is not essentially multiplicative, we investigate further the behavior of this rank with respect to products. We characterize the functions $f$ so that $beta(fg)leq omega^{xi}$ whenever $beta(g)leqomega^{xi}$ for any countable ordinal $xi.$
100 - Amitayu Banerjee 2020
In set theory without the Axiom of Choice (AC), we observe new relations of the following statements with weak choice principles. 1. Every locally finite connected graph has a maximal independent set. 2. Every locally countable connected graph has a maximal independent set. 3. If in a partially ordered set all antichains are finite and all chains have size $aleph_{alpha}$, then the set has size $aleph_{alpha}$ if $aleph_{alpha}$ is regular. 4. Every partially ordered set has a cofinal well-founded subset. 5. If $G=(V_{G},E_{G})$ is a connected locally finite chordal graph, then there is an ordering $<$ of $V_{G}$ such that ${w < v : {w,v} in E_{G}}$ is a clique for each $vin V_{G}$.
The Omitting Types Theorem in model theory and the Baire Category Theorem in topology are known to be closely linked. We examine the precise relation between these two theorems. Working with a general notion of logic we show that the classical Omitti ng Types Theorem holds for a logic if a certain associated topological space has all closed subspaces Baire. We also consider stronger Baire category conditions, and hence stronger Omitting Types Theorems, including a game version. We use examples of spaces previously studied in set-theoretic topology to produce abstract logics showing that the game Omitting Types statement is consistently not equivalent to the classical one.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا