ﻻ يوجد ملخص باللغة العربية
In set theory without the Axiom of Choice (AC), we observe new relations of the following statements with weak choice principles. 1. Every locally finite connected graph has a maximal independent set. 2. Every locally countable connected graph has a maximal independent set. 3. If in a partially ordered set all antichains are finite and all chains have size $aleph_{alpha}$, then the set has size $aleph_{alpha}$ if $aleph_{alpha}$ is regular. 4. Every partially ordered set has a cofinal well-founded subset. 5. If $G=(V_{G},E_{G})$ is a connected locally finite chordal graph, then there is an ordering $<$ of $V_{G}$ such that ${w < v : {w,v} in E_{G}}$ is a clique for each $vin V_{G}$.
We study new relations of the following statements with weak choice principles in ZF and ZFA. 1. For every infinite set X, there exists a permutation of X without fixed points. 2. There is no Hausdorff space X such that every infinite subset of X con
We have observations concerning the set theoretic strength of the following combinatorial statements without the axiom of choice. 1. If in a partially ordered set, all chains are finite and all antichains are countable, then the set is countable. 2.
In the 1970s, Lovasz built a bridge between graphs and alternating matrix spaces, in the context of perfect matchings (FCT 1979). A similar connection between bipartite graphs and matrix spaces plays a key role in the recent resolutions of the non-co
Denote by $m(G)$ the largest size of a minimal generating set of a finite group $G$. We estimate $m(G)$ in terms of $sum_{pin pi(G)}d_p(G),$ where we are denoting by $d_p(G)$ the minimal number of generators of a Sylow $p$-subgroup of $G$ and by $pi(
Soare proved that the maximal sets form an orbit in $mathcal{E}$. We consider here $mathcal{D}$-maximal sets, generalizations of maximal sets introduced by Herrmann and Kummer. Some orbits of $mathcal{D}$-maximal sets are well understood, e.g., hemim