ﻻ يوجد ملخص باللغة العربية
In this paper we proposed a novel Adversarial Training (AT) approach for end-to-end speech recognition using a Criticizing Language Model (CLM). In this way the CLM and the automatic speech recognition (ASR) model can challenge and learn from each other iteratively to improve the performance. Since the CLM only takes the text as input, huge quantities of unpaired text data can be utilized in this approach within end-to-end training. Moreover, AT can be applied to any end-to-end ASR model using any deep-learning-based language modeling frameworks, and compatible with any existing end-to-end decoding method. Initial results with an example experimental setup demonstrated the proposed approach is able to gain consistent improvements efficiently from auxiliary text data under different scenarios.
Building speech recognizers in multiple languages typically involves replicating a monolingual training recipe for each language, or utilizing a multi-task learning approach where models for different languages have separate output labels but share s
The efficacy of external language model (LM) integration with existing end-to-end (E2E) automatic speech recognition (ASR) systems can be improved significantly using the internal language model estimation (ILME) method. In this method, the internal
End-to-end (E2E) spoken language understanding (SLU) can infer semantics directly from speech signal without cascading an automatic speech recognizer (ASR) with a natural language understanding (NLU) module. However, paired utterance recordings and c
This paper proposes serialized output training (SOT), a novel framework for multi-speaker overlapped speech recognition based on an attention-based encoder-decoder approach. Instead of having multiple output layers as with the permutation invariant t
Achieving high accuracy with end-to-end speech recognizers requires careful parameter initialization prior to training. Otherwise, the networks may fail to find a good local optimum. This is particularly true for online networks, such as unidirection