ﻻ يوجد ملخص باللغة العربية
This paper proposes serialized output training (SOT), a novel framework for multi-speaker overlapped speech recognition based on an attention-based encoder-decoder approach. Instead of having multiple output layers as with the permutation invariant training (PIT), SOT uses a model with only one output layer that generates the transcriptions of multiple speakers one after another. The attention and decoder modules take care of producing multiple transcriptions from overlapped speech. SOT has two advantages over PIT: (1) no limitation in the maximum number of speakers, and (2) an ability to model the dependencies among outputs for different speakers. We also propose a simple trick that allows SOT to be executed in $O(S)$, where $S$ is the number of the speakers in the training sample, by using the start times of the constituent source utterances. Experimental results on LibriSpeech corpus show that the SOT models can transcribe overlapped speech with variable numbers of speakers significantly better than PIT-based models. We also show that the SOT models can accurately count the number of speakers in the input audio.
End-to-end (E2E) spoken language understanding (SLU) can infer semantics directly from speech signal without cascading an automatic speech recognizer (ASR) with a natural language understanding (NLU) module. However, paired utterance recordings and c
While significant improvements have been made in recent years in terms of end-to-end automatic speech recognition (ASR) performance, such improvements were obtained through the use of very large neural networks, unfit for embedded use on edge devices
Whispering is an important mode of human speech, but no end-to-end recognition results for it were reported yet, probably due to the scarcity of available whispered speech data. In this paper, we present several approaches for end-to-end (E2E) recogn
Automatic Speech Recognition (ASR) using multiple microphone arrays has achieved great success in the far-field robustness. Taking advantage of all the information that each array shares and contributes is crucial in this task. Motivated by the advan
We present Espresso, an open-source, modular, extensible end-to-end neural automatic speech recognition (ASR) toolkit based on the deep learning library PyTorch and the popular neural machine translation toolkit fairseq. Espresso supports distributed