ﻻ يوجد ملخص باللغة العربية
Cell detection and counting in the image-based ELISPOT and Fluorospot immunoassays is considered a bottleneck. The task has remained hard to automatize, and biomedical researchers often have to rely on results that are not accurate. Previously proposed solutions are heuristic, and data-based solutions are subject to a lack of objective ground truth data. In this paper, we analyze a partial differential equations model for ELISPOT, Fluorospot, and assays of similar design. This leads us to a mathematical observation model for the images generated by these assays. We use this model to motivate a methodology for cell detection. Finally, we provide a real-data example that suggests that this cell detection methodology and a human expert perform comparably.
Accurate cell detection and counting in the image-based ELISpot and FluoroSpot immunoassays is a challenging task. Recently proposed methodology matches human accuracy by leveraging knowledge of the underlying physical process of these assays and usi
Microorganisms such as bacteria and fungi play essential roles in many application fields, like biotechnique, medical technique and industrial domain. Microorganism counting techniques are crucial in microorganism analysis, helping biologists and rel
Since the beginning of this decade, CNN has been a very successful tool in the field of Computer Vision tasks.The invention of CNN was inspired from neuroscience and it shares a lot of anatomical similarities with our visual system.Inspired by the an
Convolutional neural networks, the state of the art for image segmentation, have been successfully applied to histology images by many computational researchers. However, the translatability of this technology to clinicians and biological researchers
Obtaining a large amount of labeled data in medical imaging is laborious and time-consuming, especially for histopathology. However, it is much easier and cheaper to get unlabeled data from whole-slide images (WSIs). Semi-supervised learning (SSL) is