ﻻ يوجد ملخص باللغة العربية
Since the beginning of this decade, CNN has been a very successful tool in the field of Computer Vision tasks.The invention of CNN was inspired from neuroscience and it shares a lot of anatomical similarities with our visual system.Inspired by the anatomyof humanvisual system, wearguethat the existing U-Net architecture can be improvedin many ways. As human visual system uses attention mechanism, we have used attention concatenation in place of normalconcatenation.Although, CNN is purely feed-forward in nature but anatomical evidences show that our brain contains recurrent synapses and they often outnumber feed-forward and top-down connections. Thisfact inspiresus to userecurrent convolution connectionsin place of normalconvolution blocksin U-Net.Thispaper also addressesthe class imbalance issuein the field of medical image analysis. The paperresolvestheproblem of class imbalanceswith the help of state-of-the-art loss functions.Weargue thatourproposed architecturecan be trained end to end with a few training data and it outperforms the other variantsof U-Net.
Purpose: To evaluate nerve fiber layer (NFL) reflectance for glaucoma diagnosis. Methods: Participants were imaged with 4.5X4.5-mm volumetric disc scans using spectral-domain optical coherence tomography (OCT). The normalized NFL reflectance map was
Narwhal is one of the most mysterious marine mammals, due to its isolated habitat in the Arctic region. Tagging is a technology that has the potential to explore the activities of this species, where behavioral information can be collected from instr
The novel coronavirus disease 2019 (COVID-19) has been spreading rapidly around the world and caused significant impact on the public health and economy. However, there is still lack of studies on effectively quantifying the lung infection caused by
Fundus photography has routinely been used to document the presence and severity of retinal degenerative diseases such as age-related macular degeneration (AMD), glaucoma, and diabetic retinopathy (DR) in clinical practice, for which the fovea and op
Automatic segmentation of multi-sequence (multi-modal) cardiac MR (CMR) images plays a significant role in diagnosis and management for a variety of cardiac diseases. However, the performance of relevant algorithms is significantly affected by the pr