ﻻ يوجد ملخص باللغة العربية
Biometric authentication by means of handwritten signatures is a challenging pattern recognition task, which aims to infer a writer model from only a handful of genuine signatures. In order to make it more difficult for a forger to attack the verification system, a promising strategy is to combine different writer models. In this work, we propose to complement a recent structural approach to offline signature verification based on graph edit distance with a statistical approach based on metric learning with deep neural networks. On the MCYT and GPDS benchmark datasets, we demonstrate that combining the structural and statistical models leads to significant improvements in performance, profiting from their complementary properties.
Scene Graph, as a vital tool to bridge the gap between language domain and image domain, has been widely adopted in the cross-modality task like VQA. In this paper, we propose a new method to edit the scene graph according to the user instructions, w
The area of Handwritten Signature Verification has been broadly researched in the last decades, but remains an open research problem. The objective of signature verification systems is to discriminate if a given signature is genuine (produced by the
Verifying the identity of a person using handwritten signatures is challenging in the presence of skilled forgeries, where a forger has access to a persons signature and deliberately attempt to imitate it. In offline (static) signature verification,
Offline Signature Verification (OSV) remains a challenging pattern recognition task, especially in the presence of skilled forgeries that are not available during the training. This challenge is aggravated when there are small labeled training data a
Automatic Offline Handwritten Signature Verification has been researched over the last few decades from several perspectives, using insights from graphology, computer vision, signal processing, among others. In spite of the advancements on the field,