ﻻ يوجد ملخص باللغة العربية
We introduce a fabrication method for gate-all-around nanowire field-effect transistors. Single nanowires were aligned perpendicular to underlying bottom gates using a resist-trench alignment technique. Top gates were then defined aligned to the bottom gates to form gate-all-around structures. This approach overcomes significant limitations in minimal obtainable gate length and gate-length control in previous horizontal wrap-gated nanowire transistors that arise because the gate is defined by wet etching. In the method presented here gate-length control is limited by the resolution of the electron-beam-lithography process. We demonstrate the versatility of our approach by fabricating a device with an independent bottom gate, top gate, and gate-all-around structure as well as a device with three independent gate-all-around structures with 300 nm, 200 nm, and 150 nm gate length. Our method enables us to achieve sub-threshold swings as low as 38 mV/dec at 77 K for a 150 nm gate length.
We report the development of nanowire field-effect transistors featuring an ultra-thin parylene film as a polymer gate insulator. The room temperature, gas-phase deposition of parylene is an attractive alternative to oxide insulators prepared at high
We report a new approach to integrating high-k{appa} dielectrics in both bottom- and top-gated MoS2 field-effect transistors (FETs) through thermal oxidation and mechanical assembly of layered twodimensional (2D) TaS2. Combined X-ray photoelectron sp
Non-volatile memory devices have been limited to flash architectures that are complex devices. Here, we present a unique photomemory effect in MoS$_2$ transistors. The photomemory is based on a photodoping effect - a controlled way of manipulating th
High-mobility field effect transistors can serve as resonant detectors of terahertz radiation due to excitation of plasmons in the channel. The modeling of these devices previously relied either on approximate techniques, or complex full-wave simulat
Palladium diselenide (PdSe2) is a recently isolated layered material that has attracted a lot of interest for the pentagonal structure, the air stability and the electrical properties largely tunable by the number of layers. In this work, PdSe2 is us