ﻻ يوجد ملخص باللغة العربية
Based on the well known fact that the quasinormal frequencies are the poles of the frequency domain Greens function we describe a method that allows us to calculate exactly the quasinormal frequencies of the Klein-Gordon field moving in the three-dimensional rotating BTZ black hole. These quasinormal frequencies are already published and widely explored in several applications, but we use this example to expound the proposed method of computation. We think that the described procedure can be useful to calculate exactly the quasinormal frequencies of classical fields propagating in other backgrounds. Furthermore, we compare with previous results and discuss some related facts.
Quasinormal modes describe the return to equilibrium of a perturbed system, in particular the ringdown phase of a black hole merger. But as globally-defined quantities, the quasinormal spectrum can be highly sensitive to global structure, including d
We compute the quasinormal mode frequencies and Regge poles of the canonical acoustic hole (a black hole analogue), using three methods. First, we show how damped oscillations arise by evolving generic perturbations in the time domain using a simple
Recently it has been proposed that a strange logarithmic expression for the so-called Barbero-Immirzi parameter, which is one of the ingredients that are necessary for Loop Quantum Gravity (LQG) to predict the correct black hole entropy, is not anoth
In the study of perturbations around black hole configurations, whether an external source can influence the perturbation behavior is an interesting topic to investigate. When the source acts as an initial pulse, it is intuitively acceptable that the
We consider the equivalence of quasinormal modes and geodesic quantities recently brought back due to the black hole shadow observation by Event Horizon Telescope. Using WKB method we found an analytical relation between the real part of quasinormal