ترغب بنشر مسار تعليمي؟ اضغط هنا

An analytical computation of asymptotic Schwarzschild quasinormal frequencies

163   0   0.0 ( 0 )
 نشر من قبل Lubos Motl
 تاريخ النشر 2002
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Lubos Motl




اسأل ChatGPT حول البحث

Recently it has been proposed that a strange logarithmic expression for the so-called Barbero-Immirzi parameter, which is one of the ingredients that are necessary for Loop Quantum Gravity (LQG) to predict the correct black hole entropy, is not another sign of the inconsistency of this approach to quantization of General Relativity, but is rather a meaningful number that can be independently justified in classical GR. The alternative justification involves the knowledge of the real part of the frequencies of black hole quasinormal states whose imaginary part blows up. In this paper we present an analytical derivation of the states with frequencies approaching a large imaginary number plus ln 3 / 8 pi M; this constant has been only known numerically so far. We discuss the structure of the quasinormal states for perturbations of various spin. Possible implications of these states for thermal physics of black holes and quantum gravity are mentioned and interpreted in a new way. A general conjecture about the asymptotic states is stated. Although our main result lends some credibility to LQG, we also review some of its claims in a critical fashion and speculate about its possible future relevance for Quantum Gravity.



قيم البحث

اقرأ أيضاً

We consider the equivalence of quasinormal modes and geodesic quantities recently brought back due to the black hole shadow observation by Event Horizon Telescope. Using WKB method we found an analytical relation between the real part of quasinormal frequencies at the eikonal limit and black hole shadow radius. We verify this correspondence with two black hole families in $4$ and $D$ dimensions, respectively.
We consider quantum corrections for the Schwarzschild black hole metric by using the generalized uncertainty principle (GUP) to investigate quasinormal modes, shadow and their relationship in the eikonal limit. We calculate the quasinormal frequencie s of the quantum-corrected Schwarzschild black hole by using the sixth-order Wentzel-Kramers-Brillouin (WKB) approximation, and also perform a numerical analysis that confirms the results obtained from this approach. We also find that the shadow radius is nonzero even at very small mass limit for finite GUP parameter.
134 - Guido Festuccia , Hong Liu 2008
We derive a quantization formula of Bohr-Sommerfeld type for computing quasinormal frequencies for scalar perturbations in an AdS black hole in the limit of large scalar mass or spatial momentum. We then apply the formula to find poles in retarded Gr een functions of boundary CFTs on $R^{1,d-1}$ and $RxS^{d-1}$. We find that when the boundary theory is perturbed by an operator of dimension $Delta>> 1$, the relaxation time back to equilibrium is given at zero momentum by ${1 over Delta pi T} << {1 over pi T}$. Turning on a large spatial momentum can significantly increase it. For a generic scalar operator in a CFT on $R^{1,d-1}$, there exists a sequence of poles near the lightcone whose imaginary part scales with momentum as $p^{-{d-2 over d+2}}$ in the large momentum limit. For a CFT on a sphere $S^{d-1}$ we show that the theory possesses a large number of long-lived quasiparticles whose imaginary part is exponentially small in momentum.
In this article we show that the asymptotic iteration method (AIM) allows one to numerically find the quasinormal modes of Schwarzschild and Schwarzschild de Sitter (SdS) black holes. An added benefit of the method is that it can also be used to calc ulate the Schwarzschild anti-de Sitter (SAdS) quasinormal modes for the case of spin zero perturbations. We also discuss an improved version of the AIM, more suitable for numerical implementation.
We study geodesics in the Schwarzschild space-time affected by an uncertainty in the mass parameter described by a Gaussian distribution. This study could serve as a first attempt at investigating possible quantum effects of black hole space-times on the motion of matter in their surroundings as well as the role of uncertainties in the measurement of the black hole parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا